Kubernetes requires a set of machines to host the Kubernetes control plane and the worker nodes where containers are ultimately run. In this lab you will provision the compute resources required for running a secure and highly available Kubernetes cluster across a single [compute zone](https://cloud.google.com/compute/docs/regions-zones/regions-zones).
> Ensure a default compute zone and region have been set as described in the [Prerequisites](01-prerequisites.md#set-a-default-compute-region-and-zone) lab.
## Networking
The Kubernetes [networking model](https://kubernetes.io/docs/concepts/cluster-administration/networking/#kubernetes-model) assumes a flat network in which containers and nodes can communicate with each other. In cases where this is not desired [network policies](https://kubernetes.io/docs/concepts/services-networking/network-policies/) can limit how groups of containers are allowed to communicate with each other and external network endpoints.
> Setting up network policies is out of scope for this tutorial.
### Virtual Private Cloud Network
In this section a dedicated [Virtual Private Cloud](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) (VPC) network will be setup to host the Kubernetes cluster.
Create the `kubernetes-the-hard-way` custom VPC network:
A [subnet](https://cloud.google.com/compute/docs/vpc/#vpc_networks_and_subnets) must be provisioned with an IP address range large enough to assign a private IP address to each node in the Kubernetes cluster.
Create the `kubernetes` subnet in the `kubernetes-the-hard-way` VPC network:
Create a firewall rule that allows health check probes from the GCP [network load balancer IP ranges](https://cloud.google.com/compute/docs/load-balancing/network/#firewall_rules_and_network_load_balancing):
> An [external load balancer](https://cloud.google.com/compute/docs/load-balancing/network/) will be used to expose the Kubernetes API Servers to remote clients.
List the firewall rules in the `kubernetes-the-hard-way` VPC network:
The compute instances in this lab will be provisioned using [Ubuntu Server](https://www.ubuntu.com/server) 16.04, which has good support for the [cri-containerd container runtime](https://github.com/kubernetes-incubator/cri-containerd). Each compute instance will be provisioned with a fixed private IP address to simplify the Kubernetes bootstrapping process.
Each worker instance requires a pod subnet allocation from the Kubernetes cluster CIDR range. The pod subnet allocation will be used to configure container networking in a later exercise. The `pod-cidr` instance metadata will be used to expose pod subnet allocations to compute instances at runtime.
> The Kubernetes cluster CIDR range is defined by the Controller Manager's `--cluster-cidr` flag. In this tutorial the cluster CIDR range will be set to `10.200.0.0/16`, which supports 254 subnets.
Create three compute instances which will host the Kubernetes worker nodes: