system-design-primer/README-zh-Hans.md

354 lines
12 KiB
Markdown
Raw Normal View History

2023-08-21 10:42:00 +03:00
import pandas as pd
import numpy as np
import hashlib
from cryptography.fernet import Fernet
import logging
import time
from flask import Flask, render_template, request
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, f1_score
from opacus import PrivacyEngine
import torch
import torch.nn as nn
import torch.optim as optim
app = Flask(__name__)
# Initialize logging
logging.basicConfig(filename='app_monitoring.log', level=logging.INFO)
# Step 1: Collect User Input and Medical Data
# Collect data from patients using an app
data = {name:[], 'age': [], 'gender': [], 'symptoms': [], 'diagnosis': []}
while True:
name = input(Enter full name:)
age = input('Enter age: ')
gender = input('Enter gender (M/F): ')
symptoms = input('Enter symptoms (comma-separated): ')
diagnosis = input('Enter diagnosis (Y/N): ')
data['age'].append(age)
data['gender'].append(gender)
data['symptoms'].append(symptoms)
data['diagnosis'].append(diagnosis)
again = input('Enter another patient? (Y/N): ')
if again.lower() != 'y':
break
# Convert data to a pandas dataframe
data_df = pd.DataFrame(data)
# Split dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(data_df.drop('diagnosis', axis=1), data_df['diagnosis'], test_size=0.2, random_state=42)
# Train decision tree classifier
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
# Predict on test set
y_pred = clf.predict(X_test)
# Calculate accuracy score
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
# Step 2: Ensure Proper Data Anonymization and Protection
# Implement data anonymization and protection mechanisms
def anonymize_and_protect_data(user_data):
anonymized_data = user_data.copy()
age_ranges = {'18-25', '26-35', '36-45', '46-55', '56+'}
anonymized_data['age'] = find_age_range(user_data['age'], age_ranges)
anonymized_data['symptoms'] = perturb_symptoms(user_data['symptoms'])
return anonymized_data
# Step 3: Use AI Model to Perform Diagnosis
def use_ai_model(anonymized_data):
X_train, y_train = load_medical_records()
model = Sequential()
model.add(LSTM(64, input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(32, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(y_train.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# Train the model
model.fit(X_train, y_train, epochs=50, batch_size=32)
symptoms = load_symptoms()
diagnosis = model.predict(symptoms)
diagnosis_result = model.predict(anonymized_data)
return diagnosis_result
# Step 4: Generate Explanation for Diagnosis Decision
Step 4: Generate Explanation for Diagnosis Decision
def generate_explanation(diagnosis_result, anonymized_data):
explanation = "Example explanation: Diagnosis based on AI analysis of user input."
return explanation
# Step 5: Train the AI Model on Diverse Data
def train_model(train_data):
model = define_rnn_model()
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(train_data['X_train'], train_data['y_train'], epochs=10, batch_size=32)
return model
# Step 6: Evaluate Model's Fairness Across Demographic Groups
def evaluate_fairness(model, test_data):
fairness_metrics = {}
demographics = ['gender', 'age_group', 'race']
predicted_labels = model.predict(test_data['X_test'])
for demo in demographics:
group_indices = test_data[demo] == 'group_1'
group_labels = predicted_labels[group_indices]
group_positive_rate = np.mean(group_labels)
fairness_metrics[demo] = {
'group_positive_rate': group_positive_rate,
'overall_positive_rate': np.mean(predicted_labels),
'disparity': np.abs(group_positive_rate - np.mean(predicted_labels))
}
return fairness_metrics
test_data = {
'X_test': np.random.randn(100, 10),
'gender': ['group_1'] * 50 + ['group_2'] * 50,
'age_group': ['group_1'] * 30 + ['group_2'] * 70,
'race': ['group_1'] * 40 + ['group_2'] * 60
}
2023-08-21 10:42:00 +03:00
def load_test_data():
return test_data
# Step 7: Apply Fairness-Aware Post-Processing If Needed
def apply_fairness_post_processing(model, test_data, fairness_metrics):
corrected_predictions = model.predict(test_data['X_test'])
for demo, metrics in fairness_metrics.items():
group_indices = test_data[demo] == 'group_1'
group_positive_rate = metrics['group_positive_rate']
overall_positive_rate = metrics['overall_positive_rate']
disparity = metrics['disparity']
if disparity > 0.1:
correction_factor = group_positive_rate / overall_positive_rate
corrected_predictions[group_indices] *= correction_factor
return corrected_predictions
# Step 8: Implement Differential Privacy Mechanisms If Dealing with Sensitive Data
def implement_differential_privacy(data):
class RNNModel(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(RNNModel, self).__init__()
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
rnn_output, _ = self.rnn(x)
return rnn_output
# Load and preprocess your training data
train_data = pd.read_csv('train_data.csv') # Adjust the filename as
train_data['age'].fillna(train_data['age'].median(), inplace=True)
train_data['gender'] = train_data['gender'].map({'M': 0, 'F': 1})
train_data['symptoms'] = train_data['symptoms'].apply(lambda x: x.split(','))
input_size = input_tensor.shape[1]
hidden_size = 64
num_classes = 2
learning_rate = 0.001
model = RNNModel(input_size, hidden_size, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
privacy_engine = PrivacyEngine(
model,
sample_rate=0.1,
alphas=[1, 10, 100],
noise_multiplier=1.3,
max_grad_norm=1.0
)
privacy_engine.attach(optimizer)
for epoch in range(num_epochs):
for inputs, labels in train_data:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
def perform_diagnosis(user_data):
with torch.no_grad():
age = user_data['age']
symptoms = user_data['symptoms']
output = model(input_tensor)
diagnosis_result = torch.argmax(output).item()
return diagnosis_result
protected_data = apply_differential_privacy(data)
return protected_data
# Step 9: Ensure Data Encryption and Compliance with Regulations
def ensure_data_encryption_and_compliance(protected_data):
encryption_key = b'supersecretkey'
def encrypt_data(data):
fernet = Fernet(encryption_key)
encrypted_data = {}
for field, value in data.items():
encrypted_value = fernet.encrypt(str(value).encode())
encrypted_data[field] = encrypted_value.decode()
return encrypted_data
def decrypt_data(encrypted_data):
fernet = Fernet(encryption_key)
decrypted_data = {}
for field, encrypted_value in encrypted_data.items():
decrypted_value = fernet.decrypt(encrypted_value.encode()).decode()
decrypted_data[field] = decrypted_value
return decrypted_data
def comply_with_regulations(encrypted_data):
hashed_data = {}
for field, encrypted_value in encrypted_data.items():
hash_value = hashlib.sha256(encrypted_value.encode()).hexdigest()
hashed_data[field] = hash_value
return hashed_data
if __name__ == '__main__':
user_data = {
'age': 30,
'symptoms': 'cough, fever, fatigue'
# Include other fields
}
# Encrypt user data
encrypted_data = encrypt_data(user_data)
# Comply with data protection regulations
compliant_data = comply_with_regulations(encrypted_data)
print('Original user data:', user_data)
print('Encrypted user data:', encrypted_data)
print('Compliant data:', compliant_data)
encrypted_data = encrypt_data(protected_data)
comply_with_regulations(encrypted_data)
# Step 10: Monitor App Usage, Performance, and Accuracy
def monitor_app_and_handle_exceptions(user_data):
try:
start_time = time.time()
user_data = collect_user_input()
anonymized_data = anonymize_and_protect_data(user_data)
diagnosis_result = use_ai_model(anonymized_data)
explanation = generate_explanation(diagnosis_result, anonymized_data)
test_data = load_test_data()
fairness_metrics = evaluate_fairness(trained_model, test_data)
corrected_predictions = apply_fairness_post_processing(trained_model, test_data)
protected_data = implement_differential_privacy(user_data)
ensure_data_encryption_and_compliance(protected_data)
end_time = time.time()
processing_time = end_time - start_time
log_app_usage(user_data, anonymized_data, explanation, fairness_metrics, processing_time)
except Exception as e:
handle_exceptions(e)
# Step 11: Implement Update Mechanisms to Keep the App's Ethical Practices Up-to-Date
def implement_update_mechanisms():
def check_for_updates():
current_version = get_app_version()
latest_version = fetch_latest_version()
if current_version < latest_version:
update_app_ethical_practices()
update_app_version(latest_version)
print("App's ethical practices have been updated to the latest version.")
else:
print("App's ethical practices are up-to-date.")
# Step 12: Create User Interfaces for Interaction and Display Terms, Policies, and Feedback Options
def create_user_interfaces():
def index():
if request.method == 'POST':
age = int(request.form['age'])
symptoms = request.form['symptoms']
# Process other user input and perform diagnosis
# Render diagnosis result page
return render_template('diagnosis_result.html', diagnosis=diagnosis_result)
return render_template('index.html')
# Step 13: Continuous Improvement
def continuous_improvement():
# Implement continuous improvement strategies
pass
# Step 14: End
def end():
import atexit
# Define cleanup or finalization functions here
def cleanup_resources():
# Perform cleanup tasks such as closing database connections, releasing resources, etc.
print("Cleaning up resources...")
def save_logs():
# Save logs or other important data before exiting
print("Saving logs...")
# Register cleanup functions to be called on app exit
atexit.register(cleanup_resources)
atexit.register(save_logs)
if __name__ == '__main__':
# Load and preprocess your training and test data
train_data = load_train_data()
test_data = load_test_data()
# Train your model
trained_model = train_model(train_data)
fairness_metrics = evaluate_fairness(trained_model, test_data)
# Apply fairness-aware post-processing
corrected_predictions = apply_fairness_post_processing(trained_model, test_data, fairness_metrics)
# Encrypt and protect data
user_data = {
'age': 30,
'symptoms': 'cough, fever, fatigue'
# Include other fields
}
protected_data = apply_differential_privacy(user_data)
encrypted_data = encrypt_data(protected_data)
compliant_data = comply_with_regulations(encrypted_data)
print('Fairness Metrics:', fairness_metrics)
print('Corrected Predictions:', corrected_predictions)
print('Compliant Data:', compliant_data)
app.run()