diff --git a/solutions/system_design/sales_rank/README.md b/solutions/system_design/sales_rank/README.md
index 3ee50985..513b3208 100644
--- a/solutions/system_design/sales_rank/README.md
+++ b/solutions/system_design/sales_rank/README.md
@@ -1,88 +1,88 @@
-# Design Amazon's sales rank by category feature
+# 为 Amazon 设计分类售卖排行
-*Note: This document links directly to relevant areas found in the [system design topics](https://github.com/donnemartin/system-design-primer#index-of-system-design-topics) to avoid duplication. Refer to the linked content for general talking points, tradeoffs, and alternatives.*
+**注意:这个文档中的链接会直接指向[系统设计主题索引](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#系统设计主题的索引)中的有关部分,以避免重复的内容。你可以参考链接的相关内容,来了解其总的要点、方案的权衡取舍以及可选的替代方案。**
-## Step 1: Outline use cases and constraints
+## 第一步:简述用例与约束条件
-> Gather requirements and scope the problem.
-> Ask questions to clarify use cases and constraints.
-> Discuss assumptions.
+> 搜集需求与问题的范围。
+> 提出问题来明确用例与约束条件。
+> 讨论假设。
-Without an interviewer to address clarifying questions, we'll define some use cases and constraints.
+我们将在没有面试官明确说明问题的情况下,自己定义一些用例以及限制条件。
-### Use cases
+### 用例
-#### We'll scope the problem to handle only the following use case
+#### 我们将把问题限定在仅处理以下用例的范围中
-* **Service** calculates the past week's most popular products by category
-* **User** views the past week's most popular products by category
-* **Service** has high availability
+* **服务**根据分类计算过去一周中最受欢迎的商品
+* **用户**通过分类浏览过去一周中最受欢迎的商品
+* **服务**有着高可用性
-#### Out of scope
+#### 不在用例范围内的有
-* The general e-commerce site
- * Design components only for calculating sales rank
+* 一般的电商网站
+ * 只为售卖排行榜设计组件
-### Constraints and assumptions
+### 限制条件与假设
-#### State assumptions
+#### 提出假设
-* Traffic is not evenly distributed
-* Items can be in multiple categories
-* Items cannot change categories
-* There are no subcategories ie `foo/bar/baz`
-* Results must be updated hourly
- * More popular products might need to be updated more frequently
-* 10 million products
-* 1000 categories
-* 1 billion transactions per month
-* 100 billion read requests per month
-* 100:1 read to write ratio
+* 网络流量不是均匀分布的
+* 一个商品可能存在于多个分类中
+* 商品不能够更改分类
+* 不会存在如 `foo/bar/baz` 之类的子分类
+* 每小时更新一次结果
+ * 受欢迎的商品越多,就需要更频繁地更新
+* 1000 万个商品
+* 1000 个分类
+* 每个月 10 亿次交易
+* 每个月 1000 亿次读取请求
+* 100:1 的读写比例
-#### Calculate usage
+#### 计算用量
-**Clarify with your interviewer if you should run back-of-the-envelope usage calculations.**
+**如果你需要进行粗略的用量计算,请向你的面试官说明。**
-* Size per transaction:
- * `created_at` - 5 bytes
- * `product_id` - 8 bytes
- * `category_id` - 4 bytes
- * `seller_id` - 8 bytes
- * `buyer_id` - 8 bytes
- * `quantity` - 4 bytes
- * `total_price` - 5 bytes
- * Total: ~40 bytes
-* 40 GB of new transaction content per month
- * 40 bytes per transaction * 1 billion transactions per month
- * 1.44 TB of new transaction content in 3 years
- * Assume most are new transactions instead of updates to existing ones
-* 400 transactions per second on average
-* 40,000 read requests per second on average
+* 每笔交易的用量:
+ * `created_at` - 5 字节
+ * `product_id` - 8 字节
+ * `category_id` - 4 字节
+ * `seller_id` - 8 字节
+ * `buyer_id` - 8 字节
+ * `quantity` - 4 字节
+ * `total_price` - 5 字节
+ * 总计:大约 40 字节
+* 每个月的交易内容会产生 40 GB 的记录
+ * 每次交易 40 字节 * 每个月 10 亿次交易
+ * 3年内产生了 1.44 TB 的新交易内容记录
+ * 假定大多数的交易都是新交易而不是更改以前进行完的交易
+* 平均每秒 400 次交易次数
+* 平均每秒 40,000 次读取请求
-Handy conversion guide:
+便利换算指南:
-* 2.5 million seconds per month
-* 1 request per second = 2.5 million requests per month
-* 40 requests per second = 100 million requests per month
-* 400 requests per second = 1 billion requests per month
+* 每个月有 250 万秒
+* 每秒一个请求 = 每个月 250 万次请求
+* 每秒 40 个请求 = 每个月 1 亿次请求
+* 每秒 400 个请求 = 每个月 10 亿次请求
-## Step 2: Create a high level design
+## 第二步:概要设计
-> Outline a high level design with all important components.
+> 列出所有重要组件以规划概要设计。

-## Step 3: Design core components
+## 第三步:设计核心组件
-> Dive into details for each core component.
+> 深入每个核心组件的细节。
-### Use case: Service calculates the past week's most popular products by category
+### 用例:服务需要根据分类计算上周最受欢迎的商品
-We could store the raw **Sales API** server log files on a managed **Object Store** such as Amazon S3, rather than managing our own distributed file system.
+我们可以在现成的**对象存储**系统(例如 Amazon S3 服务)中存储 **售卖 API** 服务产生的日志文本, 因此不需要我们自己搭建分布式文件系统了。
-**Clarify with your interviewer how much code you are expected to write**.
+**向你的面试官告知你准备写多少代码**。
-We'll assume this is a sample log entry, tab delimited:
+假设下面是一个用 tab 分割的简易的日志记录:
```
timestamp product_id category_id qty total_price seller_id buyer_id
@@ -95,24 +95,25 @@ t5 product4 category1 1 5.00 5 6
...
```
-The **Sales Rank Service** could use **MapReduce**, using the **Sales API** server log files as input and writing the results to an aggregate table `sales_rank` in a **SQL Database**. We should discuss the [use cases and tradeoffs between choosing SQL or NoSQL](https://github.com/donnemartin/system-design-primer#sql-or-nosql).
+**售卖排行服务** 需要用到 **MapReduce**,并使用 **售卖 API** 服务进行日志记录,同时将结果写入 **SQL 数据库**中的总表 `sales_rank` 中。我们也可以讨论一下[究竟是用 SQL 还是用 NoSQL](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#sql-还是-nosql)。
-We'll use a multi-step **MapReduce**:
+我们需要通过以下步骤使用 **MapReduce**:
-* **Step 1** - Transform the data to `(category, product_id), sum(quantity)`
-* **Step 2** - Perform a distributed sort
+* **第 1 步** - 将数据转换为 `(category, product_id), sum(quantity)` 的形式
+* **第 2 步** - 执行分布式排序
```
class SalesRanker(MRJob):
def within_past_week(self, timestamp):
- """Return True if timestamp is within past week, False otherwise."""
+ """如果时间戳属于过去的一周则返回 True,
+ 否则返回 False。"""
...
def mapper(self, _ line):
- """Parse each log line, extract and transform relevant lines.
+ """解析日志的每一行,提取并转换相关行,
- Emit key value pairs of the form:
+ 将键值对设定为如下形式:
(category1, product1), 2
(category2, product1), 2
@@ -127,7 +128,7 @@ class SalesRanker(MRJob):
yield (category_id, product_id), quantity
def reducer(self, key, value):
- """Sum values for each key.
+ """将每个 key 的值加起来。
(category1, product1), 2
(category2, product1), 3
@@ -138,9 +139,9 @@ class SalesRanker(MRJob):
yield key, sum(values)
def mapper_sort(self, key, value):
- """Construct key to ensure proper sorting.
+ """构造 key 以确保正确的排序。
- Transform key and value to the form:
+ 将键值对转换成如下形式:
(category1, 2), product1
(category2, 3), product1
@@ -148,8 +149,8 @@ class SalesRanker(MRJob):
(category2, 7), product3
(category1, 1), product4
- The shuffle/sort step of MapReduce will then do a
- distributed sort on the keys, resulting in:
+ MapReduce 的随机排序步骤会将键
+ 值的排序打乱,变成下面这样:
(category1, 1), product4
(category1, 2), product1
@@ -165,7 +166,7 @@ class SalesRanker(MRJob):
yield key, value
def steps(self):
- """Run the map and reduce steps."""
+ """ 此处为 map reduce 步骤"""
return [
self.mr(mapper=self.mapper,
reducer=self.reducer),
@@ -174,7 +175,7 @@ class SalesRanker(MRJob):
]
```
-The result would be the following sorted list, which we could insert into the `sales_rank` table:
+得到的结果将会是如下的排序列,我们将其插入 `sales_rank` 表中:
```
(category1, 1), product4
@@ -184,7 +185,7 @@ The result would be the following sorted list, which we could insert into the `s
(category2, 7), product3
```
-The `sales_rank` table could have the following structure:
+`sales_rank` 表的数据结构如下:
```
id int NOT NULL AUTO_INCREMENT
@@ -196,21 +197,21 @@ FOREIGN KEY(category_id) REFERENCES Categories(id)
FOREIGN KEY(product_id) REFERENCES Products(id)
```
-We'll create an [index](https://github.com/donnemartin/system-design-primer#use-good-indices) on `id `, `category_id`, and `product_id` to speed up lookups (log-time instead of scanning the entire table) and to keep the data in memory. Reading 1 MB sequentially from memory takes about 250 microseconds, while reading from SSD takes 4x and from disk takes 80x longer.1
+我们会以 `id`、`category_id` 与 `product_id` 创建一个 [索引](https://github.com/donnemartin/system-design-primer#use-good-indices)以加快查询速度(只需要使用读取日志的时间,不再需要每次都扫描整个数据表)并让数据常驻内存。从内存读取 1 MB 连续数据大约要花 250 微秒,而从 SSD 读取同样大小的数据要花费 4 倍的时间,从机械硬盘读取需要花费 80 倍以上的时间。1
-### Use case: User views the past week's most popular products by category
+### 用例:用户需要根据分类浏览上周中最受欢迎的商品
-* The **Client** sends a request to the **Web Server**, running as a [reverse proxy](https://github.com/donnemartin/system-design-primer#reverse-proxy-web-server)
-* The **Web Server** forwards the request to the **Read API** server
-* The **Read API** server reads from the **SQL Database** `sales_rank` table
+* **客户端**向运行[反向代理](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#反向代理web-服务器)的 **Web 服务器**发送一个请求
+* 这个 **Web 服务器**将请求转发给**查询 API** 服务
+* The **查询 API** 服务将从 **SQL 数据库**的 `sales_rank` 表中读取数据
-We'll use a public [**REST API**](https://github.com/donnemartin/system-design-primer#representational-state-transfer-rest):
+我们可以调用一个公共的 [REST API](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#表述性状态转移rest):
```
$ curl https://amazon.com/api/v1/popular?category_id=1234
```
-Response:
+返回:
```
{
@@ -233,106 +234,105 @@ Response:
},
```
-For internal communications, we could use [Remote Procedure Calls](https://github.com/donnemartin/system-design-primer#remote-procedure-call-rpc).
+而对于服务器内部的通信,我们可以使用 [RPC](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#远程过程调用协议rpc)。
-## Step 4: Scale the design
+## 第四步:架构扩展
-> Identify and address bottlenecks, given the constraints.
+> 根据限制条件,找到并解决瓶颈。

-**Important: Do not simply jump right into the final design from the initial design!**
+**重要提示:不要从最初设计直接跳到最终设计中!**
-State you would 1) **Benchmark/Load Test**, 2) **Profile** for bottlenecks 3) address bottlenecks while evaluating alternatives and trade-offs, and 4) repeat. See [Design a system that scales to millions of users on AWS](../scaling_aws/README.md) as a sample on how to iteratively scale the initial design.
+现在你要 1) **基准测试、负载测试**。2) **分析、描述**性能瓶颈。3) 在解决瓶颈问题的同时,评估替代方案、权衡利弊。4) 重复以上步骤。请阅读[「设计一个系统,并将其扩大到为数以百万计的 AWS 用户服务」](../scaling_aws/README.md) 来了解如何逐步扩大初始设计。
-It's important to discuss what bottlenecks you might encounter with the initial design and how you might address each of them. For example, what issues are addressed by adding a **Load Balancer** with multiple **Web Servers**? **CDN**? **Master-Slave Replicas**? What are the alternatives and **Trade-Offs** for each?
+讨论初始设计可能遇到的瓶颈及相关解决方案是很重要的。例如加上一个配置多台 **Web 服务器**的**负载均衡器**是否能够解决问题?**CDN**呢?**主从复制**呢?它们各自的替代方案和需要**权衡**的利弊又有什么呢?
-We'll introduce some components to complete the design and to address scalability issues. Internal load balancers are not shown to reduce clutter.
+我们将会介绍一些组件来完成设计,并解决架构扩张问题。内置的负载均衡器将不做讨论以节省篇幅。
-*To avoid repeating discussions*, refer to the following [system design topics](https://github.com/donnemartin/system-design-primer#index-of-system-design-topics) for main talking points, tradeoffs, and alternatives:
+**为了避免重复讨论**,请参考[系统设计主题索引](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#系统设计主题的索引)相关部分来了解其要点、方案的权衡取舍以及可选的替代方案。
-* [DNS](https://github.com/donnemartin/system-design-primer#domain-name-system)
-* [CDN](https://github.com/donnemartin/system-design-primer#content-delivery-network)
-* [Load balancer](https://github.com/donnemartin/system-design-primer#load-balancer)
-* [Horizontal scaling](https://github.com/donnemartin/system-design-primer#horizontal-scaling)
-* [Web server (reverse proxy)](https://github.com/donnemartin/system-design-primer#reverse-proxy-web-server)
-* [API server (application layer)](https://github.com/donnemartin/system-design-primer#application-layer)
-* [Cache](https://github.com/donnemartin/system-design-primer#cache)
-* [Relational database management system (RDBMS)](https://github.com/donnemartin/system-design-primer#relational-database-management-system-rdbms)
-* [SQL write master-slave failover](https://github.com/donnemartin/system-design-primer#fail-over)
-* [Master-slave replication](https://github.com/donnemartin/system-design-primer#master-slave-replication)
-* [Consistency patterns](https://github.com/donnemartin/system-design-primer#consistency-patterns)
-* [Availability patterns](https://github.com/donnemartin/system-design-primer#availability-patterns)
+* [DNS](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#域名系统)
+* [负载均衡器](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#负载均衡器)
+* [水平拓展](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#水平扩展)
+* [反向代理(web 服务器)](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#反向代理web-服务器)
+* [API 服务(应用层)](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#应用层)
+* [缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#缓存)
+* [关系型数据库管理系统 (RDBMS)](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#关系型数据库管理系统rdbms)
+* [SQL 故障主从切换](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#故障切换)
+* [主从复制](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#主从复制)
+* [一致性模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#一致性模式)
+* [可用性模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#可用性模式)
-The **Analytics Database** could use a data warehousing solution such as Amazon Redshift or Google BigQuery.
+**分析数据库** 可以用现成的数据仓储系统,例如使用 Amazon Redshift 或者 Google BigQuery 的解决方案。
-We might only want to store a limited time period of data in the database, while storing the rest in a data warehouse or in an **Object Store**. An **Object Store** such as Amazon S3 can comfortably handle the constraint of 40 GB of new content per month.
+当使用数据仓储技术或者**对象存储**系统时,我们只想在数据库中存储有限时间段的数据。Amazon S3 的**对象存储**系统可以很方便地设置每个月限制只允许新增 40 GB 的存储内容。
-To address the 40,000 *average* read requests per second (higher at peak), traffic for popular content (and their sales rank) should be handled by the **Memory Cache** instead of the database. The **Memory Cache** is also useful for handling the unevenly distributed traffic and traffic spikes. With the large volume of reads, the **SQL Read Replicas** might not be able to handle the cache misses. We'll probably need to employ additional SQL scaling patterns.
+平均每秒 40,000 次的读取请求(峰值将会更高), 可以通过扩展 **内存缓存** 来处理热点内容的读取流量,这对于处理不均匀分布的流量和流量峰值也很有用。由于读取量非常大,**SQL Read 副本** 可能会遇到处理缓存未命中的问题,我们可能需要使用额外的 SQL 扩展模式。
-400 *average* writes per second (higher at peak) might be tough for a single **SQL Write Master-Slave**, also pointing to a need for additional scaling techniques.
+平均每秒 400 次写操作(峰值将会更高)可能对于单个 **SQL 写主-从** 模式来说比较很困难,因此同时还需要更多的扩展技术
-SQL scaling patterns include:
+SQL 缩放模式包括:
-* [Federation](https://github.com/donnemartin/system-design-primer#federation)
-* [Sharding](https://github.com/donnemartin/system-design-primer#sharding)
-* [Denormalization](https://github.com/donnemartin/system-design-primer#denormalization)
-* [SQL Tuning](https://github.com/donnemartin/system-design-primer#sql-tuning)
+* [联合](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#联合)
+* [分片](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#分片)
+* [非规范化](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#非规范化)
+* [SQL 调优](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#sql-调优)
-We should also consider moving some data to a **NoSQL Database**.
+我们也可以考虑将一些数据移至 **NoSQL 数据库**。
-## Additional talking points
+## 其它要点
-> Additional topics to dive into, depending on the problem scope and time remaining.
+> 是否深入这些额外的主题,取决于你的问题范围和剩下的时间。
#### NoSQL
-* [Key-value store](https://github.com/donnemartin/system-design-primer#key-value-store)
-* [Document store](https://github.com/donnemartin/system-design-primer#document-store)
-* [Wide column store](https://github.com/donnemartin/system-design-primer#wide-column-store)
-* [Graph database](https://github.com/donnemartin/system-design-primer#graph-database)
-* [SQL vs NoSQL](https://github.com/donnemartin/system-design-primer#sql-or-nosql)
+* [键-值存储](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#键-值存储)
+* [文档类型存储](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#文档类型存储)
+* [列型存储](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#列型存储)
+* [图数据库](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#图数据库)
+* [SQL vs NoSQL](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#sql-还是-nosql)
-### Caching
+### 缓存
-* Where to cache
- * [Client caching](https://github.com/donnemartin/system-design-primer#client-caching)
- * [CDN caching](https://github.com/donnemartin/system-design-primer#cdn-caching)
- * [Web server caching](https://github.com/donnemartin/system-design-primer#web-server-caching)
- * [Database caching](https://github.com/donnemartin/system-design-primer#database-caching)
- * [Application caching](https://github.com/donnemartin/system-design-primer#application-caching)
-* What to cache
- * [Caching at the database query level](https://github.com/donnemartin/system-design-primer#caching-at-the-database-query-level)
- * [Caching at the object level](https://github.com/donnemartin/system-design-primer#caching-at-the-object-level)
-* When to update the cache
- * [Cache-aside](https://github.com/donnemartin/system-design-primer#cache-aside)
- * [Write-through](https://github.com/donnemartin/system-design-primer#write-through)
- * [Write-behind (write-back)](https://github.com/donnemartin/system-design-primer#write-behind-write-back)
- * [Refresh ahead](https://github.com/donnemartin/system-design-primer#refresh-ahead)
+* 在哪缓存
+ * [客户端缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#客户端缓存)
+ * [CDN 缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#cdn-缓存)
+ * [Web 服务器缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#web-服务器缓存)
+ * [数据库缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#数据库缓存)
+ * [应用缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#应用缓存)
+* 什么需要缓存
+ * [数据库查询级别的缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#数据库查询级别的缓存)
+ * [对象级别的缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#对象级别的缓存)
+* 何时更新缓存
+ * [缓存模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#缓存模式)
+ * [直写模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#直写模式)
+ * [回写模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#回写模式)
+ * [刷新](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#刷新)
-### Asynchronism and microservices
+### 异步与微服务
-* [Message queues](https://github.com/donnemartin/system-design-primer#message-queues)
-* [Task queues](https://github.com/donnemartin/system-design-primer#task-queues)
-* [Back pressure](https://github.com/donnemartin/system-design-primer#back-pressure)
-* [Microservices](https://github.com/donnemartin/system-design-primer#microservices)
+* [消息队列](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#消息队列)
+* [任务队列](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#任务队列)
+* [背压](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#背压)
+* [微服务](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#微服务)
-### Communications
+### 通信
-* Discuss tradeoffs:
- * External communication with clients - [HTTP APIs following REST](https://github.com/donnemartin/system-design-primer#representational-state-transfer-rest)
- * Internal communications - [RPC](https://github.com/donnemartin/system-design-primer#remote-procedure-call-rpc)
-* [Service discovery](https://github.com/donnemartin/system-design-primer#service-discovery)
+* 可权衡选择的方案:
+ * 与客户端的外部通信 - [使用 REST 作为 HTTP API](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#表述性状态转移rest)
+ * 服务器内部通信 - [RPC](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#远程过程调用协议rpc)
+* [服务发现](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#服务发现)
-### Security
+### 安全性
-Refer to the [security section](https://github.com/donnemartin/system-design-primer#security).
+请参阅[「安全」](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#安全)一章。
-### Latency numbers
+### 延迟数值
-See [Latency numbers every programmer should know](https://github.com/donnemartin/system-design-primer#latency-numbers-every-programmer-should-know).
+请参阅[「每个程序员都应该知道的延迟数」](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#每个程序员都应该知道的延迟数)。
-### Ongoing
+### 持续探讨
-* Continue benchmarking and monitoring your system to address bottlenecks as they come up
-* Scaling is an iterative process
+* 持续进行基准测试并监控你的系统,以解决他们提出的瓶颈问题。
+* 架构拓展是一个迭代的过程。