mirror of
https://github.com/donnemartin/system-design-primer.git
synced 2025-12-17 10:28:57 +03:00
Replace master/slave with primary/replica
After further feedback I've not updated the images and just made alterations to the READMEs for mentions of master-slave to primary-replica
This commit is contained in:
@@ -239,7 +239,7 @@ class HitCounts(MRJob):
|
||||
|
||||
说明您将迭代地执行这样的操作:1)**Benchmark/Load 测试**,2)**Profile** 出瓶颈,3)在评估替代方案和权衡时解决瓶颈,4)重复前面,可以参考[在 AWS 上设计一个可以支持百万用户的系统](../scaling_aws/README.md)这个用来解决如何迭代地扩展初始设计的例子。
|
||||
|
||||
重要的是讨论在初始设计中可能遇到的瓶颈,以及如何解决每个瓶颈。比如,在多个 **Web 服务器** 上添加 **负载平衡器** 可以解决哪些问题? **CDN** 解决哪些问题?**Master-Slave Replicas** 解决哪些问题? 替代方案是什么和怎么对每一个替代方案进行权衡比较?
|
||||
重要的是讨论在初始设计中可能遇到的瓶颈,以及如何解决每个瓶颈。比如,在多个 **Web 服务器** 上添加 **负载平衡器** 可以解决哪些问题? **CDN** 解决哪些问题?**Primary-Replica Replicas** 解决哪些问题? 替代方案是什么和怎么对每一个替代方案进行权衡比较?
|
||||
|
||||
我们将介绍一些组件来完成设计,并解决可伸缩性问题。内部的负载平衡器并不能减少杂乱。
|
||||
|
||||
@@ -253,7 +253,7 @@ class HitCounts(MRJob):
|
||||
* [应用层](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#应用层)
|
||||
* [缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#缓存)
|
||||
* [关系型数据库管理系统 (RDBMS)](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#关系型数据库管理系统rdbms)
|
||||
* [SQL write master-slave failover](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#故障切换)
|
||||
* [SQL write primary-replica failover](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#故障切换)
|
||||
* [主从复制](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#主从复制)
|
||||
* [一致性模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#一致性模式)
|
||||
* [可用性模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#可用性模式)
|
||||
@@ -264,7 +264,7 @@ class HitCounts(MRJob):
|
||||
|
||||
要处理 *平均* 每秒 40 读请求(峰值更高),其中热点内容的流量应该由 **内存缓存** 处理,而不是数据库。**内存缓存** 对于处理分布不均匀的流量和流量峰值也很有用。只要副本没有陷入复制写的泥潭,**SQL Read Replicas** 应该能够处理缓存丢失。
|
||||
|
||||
对于单个 **SQL Write Master-Slave**,*平均* 每秒 4paste 写入 (峰值更高) 应该是可以做到的。否则,我们需要使用额外的 SQL 扩展模式:
|
||||
对于单个 **SQL Write Primary-Replica**,*平均* 每秒 4paste 写入 (峰值更高) 应该是可以做到的。否则,我们需要使用额外的 SQL 扩展模式:
|
||||
|
||||
* [联合](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#联合)
|
||||
* [分片](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#分片)
|
||||
|
||||
@@ -241,7 +241,7 @@ To delete expired pastes, we could just scan the **SQL Database** for all entrie
|
||||
|
||||
State you would do this iteratively: 1) **Benchmark/Load Test**, 2) **Profile** for bottlenecks 3) address bottlenecks while evaluating alternatives and trade-offs, and 4) repeat. See [Design a system that scales to millions of users on AWS](../scaling_aws/README.md) as a sample on how to iteratively scale the initial design.
|
||||
|
||||
It's important to discuss what bottlenecks you might encounter with the initial design and how you might address each of them. For example, what issues are addressed by adding a **Load Balancer** with multiple **Web Servers**? **CDN**? **Master-Slave Replicas**? What are the alternatives and **Trade-Offs** for each?
|
||||
It's important to discuss what bottlenecks you might encounter with the initial design and how you might address each of them. For example, what issues are addressed by adding a **Load Balancer** with multiple **Web Servers**? **CDN**? **Primary-Replica Replicas**? What are the alternatives and **Trade-Offs** for each?
|
||||
|
||||
We'll introduce some components to complete the design and to address scalability issues. Internal load balancers are not shown to reduce clutter.
|
||||
|
||||
@@ -255,8 +255,8 @@ We'll introduce some components to complete the design and to address scalabilit
|
||||
* [API server (application layer)](https://github.com/donnemartin/system-design-primer#application-layer)
|
||||
* [Cache](https://github.com/donnemartin/system-design-primer#cache)
|
||||
* [Relational database management system (RDBMS)](https://github.com/donnemartin/system-design-primer#relational-database-management-system-rdbms)
|
||||
* [SQL write master-slave failover](https://github.com/donnemartin/system-design-primer#fail-over)
|
||||
* [Master-slave replication](https://github.com/donnemartin/system-design-primer#master-slave-replication)
|
||||
* [SQL write primary-replica failover](https://github.com/donnemartin/system-design-primer#fail-over)
|
||||
* [Primary-replica replication](https://github.com/donnemartin/system-design-primer#primary-replica-replication)
|
||||
* [Consistency patterns](https://github.com/donnemartin/system-design-primer#consistency-patterns)
|
||||
* [Availability patterns](https://github.com/donnemartin/system-design-primer#availability-patterns)
|
||||
|
||||
@@ -266,7 +266,7 @@ An **Object Store** such as Amazon S3 can comfortably handle the constraint of 1
|
||||
|
||||
To address the 40 *average* read requests per second (higher at peak), traffic for popular content should be handled by the **Memory Cache** instead of the database. The **Memory Cache** is also useful for handling the unevenly distributed traffic and traffic spikes. The **SQL Read Replicas** should be able to handle the cache misses, as long as the replicas are not bogged down with replicating writes.
|
||||
|
||||
4 *average* paste writes per second (with higher at peak) should be do-able for a single **SQL Write Master-Slave**. Otherwise, we'll need to employ additional SQL scaling patterns:
|
||||
4 *average* paste writes per second (with higher at peak) should be do-able for a single **SQL Write Primary-Replica**. Otherwise, we'll need to employ additional SQL scaling patterns:
|
||||
|
||||
* [Federation](https://github.com/donnemartin/system-design-primer#federation)
|
||||
* [Sharding](https://github.com/donnemartin/system-design-primer#sharding)
|
||||
|
||||
Reference in New Issue
Block a user