Merge pull request #28 from xunge0613/translate-issue-21

设计一个网页爬虫 翻译
pull/374/head
根号三 2017-05-12 12:02:54 +08:00 committed by GitHub
commit 86321d94f6
1 changed files with 177 additions and 174 deletions

View File

@ -1,104 +1,102 @@
# Design a web crawler # 设计一个网页爬虫
*Note: This document links directly to relevant areas found in the [system design topics](https://github.com/donnemartin/system-design-primer#index-of-system-design-topics) to avoid duplication. Refer to the linked content for general talking points, tradeoffs, and alternatives.* **注意:这个文档中的链接会直接指向[系统设计主题索引](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#系统设计主题的索引)中的有关部分,以避免重复的内容。你可以参考链接的相关内容,来了解其总的要点、方案的权衡取舍以及可选的替代方案。**
## Step 1: Outline use cases and constraints ## 第一步:简述用例与约束条件
> Gather requirements and scope the problem. > 把所有需要的东西聚集在一起,审视问题。不停的提问,以至于我们可以明确使用场景和约束。讨论假设。
> Ask questions to clarify use cases and constraints.
> Discuss assumptions.
Without an interviewer to address clarifying questions, we'll define some use cases and constraints. 我们将在没有面试官明确说明问题的情况下,自己定义一些用例以及限制条件。
### Use cases ### 用例
#### We'll scope the problem to handle only the following use cases #### 我们把问题限定在仅处理以下用例的范围中
* **Service** crawls a list of urls: * **服务** 抓取一系列链接:
* Generates reverse index of words to pages containing the search terms * 生成包含搜索词的网页倒排索引
* Generates titles and snippets for pages * 生成页面的标题和摘要信息
* Title and snippets are static, they do not change based on search query * 页面标题和摘要都是静态的,它们不会根据搜索词改变
* **User** inputs a search term and sees a list of relevant pages with titles and snippets the crawler generated * **用户** 输入搜索词后,可以看到相关的搜索结果列表,列表每一项都包含由网页爬虫生成的页面标题及摘要
* Only sketch high level components and interactions for this use case, no need to go into depth * 只给该用例绘制出概要组件和交互说明,无需讨论细节
* **Service** has high availability * **服务** 具有高可用性
#### Out of scope #### 无需考虑
* Search analytics * 搜索分析
* Personalized search results * 个性化搜索结果
* Page rank * 页面排名
### Constraints and assumptions ### 限制条件与假设
#### State assumptions #### 提出假设
* Traffic is not evenly distributed * 搜索流量分布不均
* Some searches are very popular, while others are only executed once * 有些搜索词非常热门,有些则非常冷门
* Support only anonymous users * 只支持匿名用户
* Generating search results should be fast * 用户很快就能看到搜索结果
* The web crawler should not get stuck in an infinite loop * 网页爬虫不应该陷入死循环
* We get stuck in an infinite loop if the graph contains a cycle * 当爬虫路径包含环的时候,将会陷入死循环
* 1 billion links to crawl * 抓取 10 亿个链接
* Pages need to be crawled regularly to ensure freshness * 要定期重新抓取页面以确保新鲜度
* Average refresh rate of about once per week, more frequent for popular sites * 平均每周重新抓取一次,网站越热门,那么重新抓取的频率越高
* 4 billion links crawled each month * 每月抓取 40 亿个链接
* Average stored size per web page: 500 KB * 每个页面的平均存储大小500 KB
* For simplicity, count changes the same as new pages * 简单起见,重新抓取的页面算作新页面
* 100 billion searches per month * 每月搜索量 1000 亿次
Exercise the use of more traditional systems - don't use existing systems such as [solr](http://lucene.apache.org/solr/) or [nutch](http://nutch.apache.org/). 用更传统的系统来练习 —— 不要使用 [solr](http://lucene.apache.org/solr/) 、[nutch](http://nutch.apache.org/) 之类的现成系统。
#### Calculate usage #### 计算用量
**Clarify with your interviewer if you should run back-of-the-envelope usage calculations.** **如果你需要进行粗略的用量计算,请向你的面试官说明。**
* 2 PB of stored page content per month * 每月存储 2 PB 页面
* 500 KB per page * 4 billion links crawled per month * 每月抓取 40 亿个页面,每个页面 500 KB
* 72 PB of stored page content in 3 years * 三年存储 72 PB 页面
* 1,600 write requests per second * 每秒 1600 次写请求
* 40,000 search requests per second * 每秒 40000 次搜索请求
Handy conversion guide: 简便换算指南:
* 2.5 million seconds per month * 一个月有 250 万秒
* 1 request per second = 2.5 million requests per month * 每秒 1 个请求,即每月 250 万个请求
* 40 requests per second = 100 million requests per month * 每秒 40 个请求,即每月 1 亿个请求
* 400 requests per second = 1 billion requests per month * 每秒 400 个请求,即每月 10 亿个请求
## Step 2: Create a high level design ## 第二步: 概要设计
> Outline a high level design with all important components. > 列出所有重要组件以规划概要设计。
![Imgur](http://i.imgur.com/xjdAAUv.png) ![Imgur](http://i.imgur.com/xjdAAUv.png)
## Step 3: Design core components ## 第三步:设计核心组件
> Dive into details for each core component. > 对每一个核心组件进行详细深入的分析。
### Use case: Service crawls a list of urls ### 用例:爬虫服务抓取一系列网页
We'll assume we have an initial list of `links_to_crawl` ranked initially based on overall site popularity. If this is not a reasonable assumption, we can seed the crawler with popular sites that link to outside content such as [Yahoo](https://www.yahoo.com/), [DMOZ](http://www.dmoz.org/), etc 假设我们有一个初始列表 `links_to_crawl`(待抓取链接),它最初基于网站整体的知名度来排序。当然如果这个假设不合理,我们可以使用 [Yahoo](https://www.yahoo.com/)、[DMOZ](http://www.dmoz.org/) 等知名门户网站作为种子链接来进行扩散 。
We'll use a table `crawled_links` to store processed links and their page signatures. 我们将用表 `crawled_links` (已抓取链接 )来记录已经处理过的链接以及相应的页面签名。
We could store `links_to_crawl` and `crawled_links` in a key-value **NoSQL Database**. For the ranked links in `links_to_crawl`, we could use [Redis](https://redis.io/) with sorted sets to maintain a ranking of page links. We should discuss the [use cases and tradeoffs between choosing SQL or NoSQL](https://github.com/donnemartin/system-design-primer#sql-or-nosql). 我们可以将 `links_to_crawl``crawled_links` 记录在键-值型 **NoSQL 数据库**中。对于 `crawled_links` 中已排序的链接,我们可以使用 [Redis](https://redis.io/) 的有序集合来维护网页链接的排名。我们应当在 [选择 SQL 还是 NoSQL 的问题上,讨论有关使用场景以及利弊 ](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#sql-还是-nosql)。
* The **Crawler Service** processes each page link by doing the following in a loop: * **爬虫服务**按照以下流程循环处理每一个页面链接:
* Takes the top ranked page link to crawl * 选取排名最靠前的待抓取链接
* Checks `crawled_links` in the **NoSQL Database** for an entry with a similar page signature * 在 **NoSQL 数据库**的 `crawled_links` 中,检查待抓取页面的签名是否与某个已抓取页面的签名相似
* If we have a similar page, reduces the priority of the page link * 若存在,则降低该页面链接的优先级
* This prevents us from getting into a cycle * 这样做可以避免陷入死循环
* Continue * 继续(进入下一次循环)
* Else, crawls the link * 若不存在,则抓取该链接
* Adds a job to the **Reverse Index Service** queue to generate a [reverse index](https://en.wikipedia.org/wiki/Search_engine_indexing) * 在**倒排索引服务**任务队列中,新增一个生成[倒排索引](https://en.wikipedia.org/wiki/Search_engine_indexing)任务。
* Adds a job to the **Document Service** queue to generate a static title and snippet * 在**文档服务**任务队列中,新增一个生成静态标题和摘要的任务。
* Generates the page signature * 生成页面签名
* Removes the link from `links_to_crawl` in the **NoSQL Database** * 在 **NoSQL 数据库**的 `links_to_crawl` 中删除该链接
* Inserts the page link and signature to `crawled_links` in the **NoSQL Database** * 在 **NoSQL 数据库**的 `crawled_links` 中插入该链接以及页面签名
**Clarify with your interviewer how much code you are expected to write**. **向面试官了解你需要写多少代码**。
`PagesDataStore` is an abstraction within the **Crawler Service** that uses the **NoSQL Database**: `PagesDataStore` 是**爬虫服务**中的一个抽象类,它使用 **NoSQL 数据库**进行存储。
``` ```
class PagesDataStore(object): class PagesDataStore(object):
@ -108,31 +106,31 @@ class PagesDataStore(object):
... ...
def add_link_to_crawl(self, url): def add_link_to_crawl(self, url):
"""Add the given link to `links_to_crawl`.""" """将指定链接加入 `links_to_crawl`"""
... ...
def remove_link_to_crawl(self, url): def remove_link_to_crawl(self, url):
"""Remove the given link from `links_to_crawl`.""" """`links_to_crawl` 中删除指定链接。"""
... ...
def reduce_priority_link_to_crawl(self, url) def reduce_priority_link_to_crawl(self, url)
"""Reduce the priority of a link in `links_to_crawl` to avoid cycles.""" """`links_to_crawl` 中降低一个链接的优先级以避免死循环。"""
... ...
def extract_max_priority_page(self): def extract_max_priority_page(self):
"""Return the highest priority link in `links_to_crawl`.""" """返回 `links_to_crawl` 中优先级最高的链接。"""
... ...
def insert_crawled_link(self, url, signature): def insert_crawled_link(self, url, signature):
"""Add the given link to `crawled_links`.""" """将指定链接加入 `crawled_links`"""
... ...
def crawled_similar(self, signature): def crawled_similar(self, signature):
"""Determine if we've already crawled a page matching the given signature""" """判断待抓取页面的签名是否与某个已抓取页面的签名相似。"""
... ...
``` ```
`Page` is an abstraction within the **Crawler Service** that encapsulates a page, its contents, child urls, and signature: `Page` 是**爬虫服务**的一个抽象类,它封装了网页对象,由页面链接、页面内容、子链接和页面签名构成。
``` ```
class Page(object): class Page(object):
@ -144,7 +142,7 @@ class Page(object):
self.signature = signature self.signature = signature
``` ```
`Crawler` is the main class within **Crawler Service**, composed of `Page` and `PagesDataStore`. `Crawler` 是**爬虫服务**的主类,由`Page` 和 `PagesDataStore` 组成。
``` ```
class Crawler(object): class Crawler(object):
@ -155,7 +153,7 @@ class Crawler(object):
self.doc_index_queue = doc_index_queue self.doc_index_queue = doc_index_queue
def create_signature(self, page): def create_signature(self, page):
"""Create signature based on url and contents.""" """基于页面链接与内容生成签名。"""
... ...
def crawl_page(self, page): def crawl_page(self, page):
@ -176,16 +174,16 @@ class Crawler(object):
self.crawl_page(page) self.crawl_page(page)
``` ```
### Handling duplicates ### 处理重复内容
We need to be careful the web crawler doesn't get stuck in an infinite loop, which happens when the graph contains a cycle. 我们要谨防网页爬虫陷入死循环,这通常会发生在爬虫路径中存在环的情况。
**Clarify with your interviewer how much code you are expected to write**. **向面试官了解你需要写多少代码**.
We'll want to remove duplicate urls: 删除重复链接:
* For smaller lists we could use something like `sort | unique` * 假设数据量较小,我们可以用类似于 `sort | unique` 的方法。(译注: 先排序,后去重)
* With 1 billion links to crawl, we could use **MapReduce** to output only entries that have a frequency of 1 * 假设有 10 亿条数据,我们应该使用 **MapReduce** 来输出只出现 1 次的记录。
``` ```
class RemoveDuplicateUrls(MRJob): class RemoveDuplicateUrls(MRJob):
@ -199,38 +197,38 @@ class RemoveDuplicateUrls(MRJob):
yield key, total yield key, total
``` ```
Detecting duplicate content is more complex. We could generate a signature based on the contents of the page and compare those two signatures for similarity. Some potential algorithms are [Jaccard index](https://en.wikipedia.org/wiki/Jaccard_index) and [cosine similarity](https://en.wikipedia.org/wiki/Cosine_similarity). 比起处理重复内容,检测重复内容更为复杂。我们可以基于网页内容生成签名,然后对比两者签名的相似度。可能会用到的算法有 [Jaccard index](https://en.wikipedia.org/wiki/Jaccard_index) 以及 [cosine similarity](https://en.wikipedia.org/wiki/Cosine_similarity)。
### Determining when to update the crawl results ### 抓取结果更新策略
Pages need to be crawled regularly to ensure freshness. Crawl results could have a `timestamp` field that indicates the last time a page was crawled. After a default time period, say one week, all pages should be refreshed. Frequently updated or more popular sites could be refreshed in shorter intervals. 要定期重新抓取页面以确保新鲜度。抓取结果应该有个 `timestamp` 字段记录上一次页面抓取时间。每隔一段时间,比如说 1 周,所有页面都需要更新一次。对于热门网站或是内容频繁更新的网站,爬虫抓取间隔可以缩短。
Although we won't dive into details on analytics, we could do some data mining to determine the mean time before a particular page is updated, and use that statistic to determine how often to re-crawl the page. 尽管我们不会深入网页数据分析的细节,我们仍然要做一些数据挖掘工作来确定一个页面的平均更新时间,并且根据相关的统计数据来决定爬虫的重新抓取频率。
We might also choose to support a `Robots.txt` file that gives webmasters control of crawl frequency. 当然我们也应该根据站长提供的 `Robots.txt` 来控制爬虫的抓取频率。
### Use case: User inputs a search term and sees a list of relevant pages with titles and snippets ### 用例:用户输入搜索词后,可以看到相关的搜索结果列表,列表每一项都包含由网页爬虫生成的页面标题及摘要
* The **Client** sends a request to the **Web Server**, running as a [reverse proxy](https://github.com/donnemartin/system-design-primer#reverse-proxy-web-server) * **客户端**向运行[反向代理](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#反向代理web-服务器)的 **Web 服务器**发送一个请求
* The **Web Server** forwards the request to the **Query API** server * **Web 服务器** 发送请求到 **Query API** 服务器
* The **Query API** server does the following: * **查询 API** 服务将会做这些事情:
* Parses the query * 解析查询参数
* Removes markup * 删除 HTML 标记
* Breaks up the text into terms * 将文本分割成词组 (译注: 分词处理)
* Fixes typos * 修正错别字
* Normalizes capitalization * 规范化大小写
* Converts the query to use boolean operations * 将搜索词转换为布尔运算
* Uses the **Reverse Index Service** to find documents matching the query * 使用**倒排索引服务**来查找匹配查询的文档
* The **Reverse Index Service** ranks the matching results and returns the top ones * **倒排索引服务**对匹配到的结果进行排名,然后返回最符合的结果
* Uses the **Document Service** to return titles and snippets * 使用**文档服务**返回文章标题与摘要
We'll use a public [**REST API**](https://github.com/donnemartin/system-design-primer#representational-state-transfer-rest): 我们使用 [**REST API**](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#表述性状态转移rest) 与客户端通信:
``` ```
$ curl https://search.com/api/v1/search?query=hello+world $ curl https://search.com/api/v1/search?query=hello+world
``` ```
Response: 响应内容:
``` ```
{ {
@ -250,104 +248,109 @@ Response:
}, },
``` ```
For internal communications, we could use [Remote Procedure Calls](https://github.com/donnemartin/system-design-primer#remote-procedure-call-rpc). 对于服务器内部通信,我们可以使用 [远程过程调用协议RPC](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#远程过程调用协议rpc)
## Step 4: Scale the design
> Identify and address bottlenecks, given the constraints. ## 第四步:架构扩展
> 根据限制条件,找到并解决瓶颈。
![Imgur](http://i.imgur.com/bWxPtQA.png) ![Imgur](http://i.imgur.com/bWxPtQA.png)
**Important: Do not simply jump right into the final design from the initial design!** **重要提示:不要直接从最初设计跳到最终设计!**
State you would 1) **Benchmark/Load Test**, 2) **Profile** for bottlenecks 3) address bottlenecks while evaluating alternatives and trade-offs, and 4) repeat. See [Design a system that scales to millions of users on AWS](../scaling_aws/README.md) as a sample on how to iteratively scale the initial design. 现在你要 1) **基准测试、负载测试**。2) **分析、描述**性能瓶颈。3) 在解决瓶颈问题的同时评估替代方案、权衡利弊。4) 重复以上步骤。请阅读[设计一个系统,并将其扩大到为数以百万计的 AWS 用户服务](../scaling_aws/README.md) 来了解如何逐步扩大初始设计。
It's important to discuss what bottlenecks you might encounter with the initial design and how you might address each of them. For example, what issues are addressed by adding a **Load Balancer** with multiple **Web Servers**? **CDN**? **Master-Slave Replicas**? What are the alternatives and **Trade-Offs** for each? 讨论初始设计可能遇到的瓶颈及相关解决方案是很重要的。例如加上一套配备多台 **Web 服务器**的**负载均衡器**是否能够解决问题?**CDN**呢?**主从复制**呢?它们各自的替代方案和需要**权衡**的利弊又有哪些呢?
We'll introduce some components to complete the design and to address scalability issues. Internal load balancers are not shown to reduce clutter. 我们将会介绍一些组件来完成设计,并解决架构规模扩张问题。内置的负载均衡器将不做讨论以节省篇幅。
*To avoid repeating discussions*, refer to the following [system design topics](https://github.com/donnemartin/system-design-primer#index-of-system-design-topics) for main talking points, tradeoffs, and alternatives: **为了避免重复讨论**,请参考[系统设计主题索引](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#系统设计主题的索引)相关部分来了解其要点、方案的权衡取舍以及替代方案。
* [DNS](https://github.com/donnemartin/system-design-primer#domain-name-system) * [DNS](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#域名系统)
* [Load balancer](https://github.com/donnemartin/system-design-primer#load-balancer) * [负载均衡器](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#负载均衡器)
* [Horizontal scaling](https://github.com/donnemartin/system-design-primer#horizontal-scaling) * [水平扩展](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#水平扩展)
* [Web server (reverse proxy)](https://github.com/donnemartin/system-design-primer#reverse-proxy-web-server) * [Web 服务器(反向代理)](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#反向代理web-服务器)
* [API server (application layer)](https://github.com/donnemartin/system-design-primer#application-layer) * [API 服务器(应用层)](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#应用层)
* [Cache](https://github.com/donnemartin/system-design-primer#cache) * [缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#缓存)
* [NoSQL](https://github.com/donnemartin/system-design-primer#nosql) * [NoSQL](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#nosql)
* [Consistency patterns](https://github.com/donnemartin/system-design-primer#consistency-patterns) * [一致性模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#一致性模式)
* [Availability patterns](https://github.com/donnemartin/system-design-primer#availability-patterns) * [可用性模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#可用性模式)
Some searches are very popular, while others are only executed once. Popular queries can be served from a **Memory Cache** such as Redis or Memcached to reduce response times and to avoid overloading the **Reverse Index Service** and **Document Service**. The **Memory Cache** is also useful for handling the unevenly distributed traffic and traffic spikes. Reading 1 MB sequentially from memory takes about 250 microseconds, while reading from SSD takes 4x and from disk takes 80x longer.<sup><a href=https://github.com/donnemartin/system-design-primer#latency-numbers-every-programmer-should-know>1</a></sup> 有些搜索词非常热门,有些则非常冷门。热门的搜索词可以通过诸如 Redis 或者 Memcached 之类的**内存缓存**来缩短响应时间,避免**倒排索引服务**以及**文档服务**过载。**内存缓存**同样适用于流量分布不均匀以及流量短时高峰问题。从内存中读取 1 MB 连续数据大约需要 250 微秒,而从 SSD 读取同样大小的数据要花费 4 倍的时间,从机械硬盘读取需要花费 80 倍以上的时间。<sup><a href="https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#每个程序员都应该知道的延迟数">1</a></sup>
Below are a few other optimizations to the **Crawling Service**:
* To handle the data size and request load, the **Reverse Index Service** and **Document Service** will likely need to make heavy use sharding and replication. 以下是优化**爬虫服务**的其他建议:
* DNS lookup can be a bottleneck, the **Crawler Service** can keep its own DNS lookup that is refreshed periodically
* The **Crawler Service** can improve performance and reduce memory usage by keeping many open connections at a time, referred to as [connection pooling](https://en.wikipedia.org/wiki/Connection_pool)
* Switching to [UDP](https://github.com/donnemartin/system-design-primer#user-datagram-protocol-udp) could also boost performance
* Web crawling is bandwidth intensive, ensure there is enough bandwidth to sustain high throughput
## Additional talking points * 为了处理数据大小问题以及网络请求负载,**倒排索引服务**和**文档服务**可能需要大量应用数据分片和数据复制。
* DNS 查询可能会成为瓶颈,**爬虫服务**最好专门维护一套定期更新的 DNS 查询服务。
* 借助于[连接池](https://en.wikipedia.org/wiki/Connection_pool),即同时维持多个开放网络连接,可以提升**爬虫服务**的性能并减少内存使用量。
* 改用 [UDP](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#用户数据报协议udp) 协议同样可以提升性能
* 网络爬虫受带宽影响较大,请确保带宽足够维持高吞吐量。
> Additional topics to dive into, depending on the problem scope and time remaining. ## 其它要点
### SQL scaling patterns > 是否深入这些额外的主题,取决于你的问题范围和剩下的时间。
* [Read replicas](https://github.com/donnemartin/system-design-primer#master-slave) ### SQL 扩展模式
* [Federation](https://github.com/donnemartin/system-design-primer#federation)
* [Sharding](https://github.com/donnemartin/system-design-primer#sharding) * [读取复制](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#主从复制)
* [Denormalization](https://github.com/donnemartin/system-design-primer#denormalization) * [联合](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#联合)
* [SQL Tuning](https://github.com/donnemartin/system-design-primer#sql-tuning) * [分片](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#分片)
* [非规范化](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#非规范化)
* [SQL 调优](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#sql-调优)
#### NoSQL #### NoSQL
* [Key-value store](https://github.com/donnemartin/system-design-primer#key-value-store) * [键-值存储](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#键-值存储)
* [Document store](https://github.com/donnemartin/system-design-primer#document-store) * [文档类型存储](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#文档类型存储)
* [Wide column store](https://github.com/donnemartin/system-design-primer#wide-column-store) * [列型存储](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#列型存储)
* [Graph database](https://github.com/donnemartin/system-design-primer#graph-database) * [图数据库](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#图数据库)
* [SQL vs NoSQL](https://github.com/donnemartin/system-design-primer#sql-or-nosql) * [SQL vs NoSQL](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#sql-还是-nosql)
### Caching
* Where to cache ### 缓存
* [Client caching](https://github.com/donnemartin/system-design-primer#client-caching)
* [CDN caching](https://github.com/donnemartin/system-design-primer#cdn-caching)
* [Web server caching](https://github.com/donnemartin/system-design-primer#web-server-caching)
* [Database caching](https://github.com/donnemartin/system-design-primer#database-caching)
* [Application caching](https://github.com/donnemartin/system-design-primer#application-caching)
* What to cache
* [Caching at the database query level](https://github.com/donnemartin/system-design-primer#caching-at-the-database-query-level)
* [Caching at the object level](https://github.com/donnemartin/system-design-primer#caching-at-the-object-level)
* When to update the cache
* [Cache-aside](https://github.com/donnemartin/system-design-primer#cache-aside)
* [Write-through](https://github.com/donnemartin/system-design-primer#write-through)
* [Write-behind (write-back)](https://github.com/donnemartin/system-design-primer#write-behind-write-back)
* [Refresh ahead](https://github.com/donnemartin/system-design-primer#refresh-ahead)
### Asynchronism and microservices * 在哪缓存
* [客户端缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#客户端缓存)
* [CDN 缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#cdn-缓存)
* [Web 服务器缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#web-服务器缓存)
* [数据库缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#数据库缓存)
* [应用缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#应用缓存)
* 什么需要缓存
* [数据库查询级别的缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#数据库查询级别的缓存)
* [对象级别的缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#对象级别的缓存)
* 何时更新缓存
* [缓存模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#缓存模式)
* [直写模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#直写模式)
* [回写模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#回写模式)
* [刷新](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#刷新)
* [Message queues](https://github.com/donnemartin/system-design-primer#message-queues) ### 异步与微服务
* [Task queues](https://github.com/donnemartin/system-design-primer#task-queues)
* [Back pressure](https://github.com/donnemartin/system-design-primer#back-pressure)
* [Microservices](https://github.com/donnemartin/system-design-primer#microservices)
### Communications * [消息队列](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#消息队列)
* [任务队列](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#任务队列)
* [背压](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#背压)
* [微服务](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#微服务)
* Discuss tradeoffs: ### 通信
* External communication with clients - [HTTP APIs following REST](https://github.com/donnemartin/system-design-primer#representational-state-transfer-rest)
* Internal communications - [RPC](https://github.com/donnemartin/system-design-primer#remote-procedure-call-rpc)
* [Service discovery](https://github.com/donnemartin/system-design-primer#service-discovery)
### Security * 可权衡选择的方案:
* 与客户端的外部通信 - [使用 REST 作为 HTTP API](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#表述性状态转移rest)
* 内部通信 - [RPC](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#远程过程调用协议rpc)
* [服务发现](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#服务发现)
Refer to the [security section](https://github.com/donnemartin/system-design-primer#security).
### Latency numbers ### 安全性
See [Latency numbers every programmer should know](https://github.com/donnemartin/system-design-primer#latency-numbers-every-programmer-should-know). 请参阅[安全](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#安全)。
### Ongoing
* Continue benchmarking and monitoring your system to address bottlenecks as they come up ### 延迟数值
* Scaling is an iterative process
请参阅[每个程序员都应该知道的延迟数](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#每个程序员都应该知道的延迟数)。
### 持续探讨
* 持续进行基准测试并监控你的系统,以解决他们提出的瓶颈问题。
* 架构扩展是一个迭代的过程。