mirror of
				https://github.com/donnemartin/system-design-primer.git
				synced 2025-11-04 10:12:32 +03:00 
			
		
		
		
	Add Query Cache solution
This commit is contained in:
		
							
								
								
									
										306
									
								
								solutions/system_design/query_cache/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										306
									
								
								solutions/system_design/query_cache/README.md
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,306 @@
 | 
			
		||||
# Design a key-value cache to save the results of the most recent web server queries
 | 
			
		||||
 | 
			
		||||
*Note: This document links directly to relevant areas found in the [system design topics](https://github.com/donnemartin/system-design-primer-interview#index-of-system-design-topics-1) to avoid duplication.  Refer to the linked content for general talking points, tradeoffs, and alternatives.*
 | 
			
		||||
 | 
			
		||||
## Step 1: Outline use cases and constraints
 | 
			
		||||
 | 
			
		||||
> Gather requirements and scope the problem.
 | 
			
		||||
> Ask questions to clarify use cases and constraints.
 | 
			
		||||
> Discuss assumptions.
 | 
			
		||||
 | 
			
		||||
Without an interviewer to address clarifying questions, we'll define some use cases and constraints.
 | 
			
		||||
 | 
			
		||||
### Use cases
 | 
			
		||||
 | 
			
		||||
#### We'll scope the problem to handle only the following use cases
 | 
			
		||||
 | 
			
		||||
* **User** sends a search request resulting in a cache hit
 | 
			
		||||
* **User** sends a search request resulting in a cache miss
 | 
			
		||||
* **Service** has high availability
 | 
			
		||||
 | 
			
		||||
### Constraints and assumptions
 | 
			
		||||
 | 
			
		||||
#### State assumptions
 | 
			
		||||
 | 
			
		||||
* Traffic is not evenly distributed
 | 
			
		||||
    * Popular queries should almost always be in the cache
 | 
			
		||||
    * Need to determine how to expire/refresh
 | 
			
		||||
* Serving from cache requires fast lookups
 | 
			
		||||
* Low latency between machines
 | 
			
		||||
* Limited memory in cache
 | 
			
		||||
    * Need to determine what to keep/remove
 | 
			
		||||
    * Need to cache millions of queries
 | 
			
		||||
* 10 million users
 | 
			
		||||
* 10 billion queries per month
 | 
			
		||||
 | 
			
		||||
#### Calculate usage
 | 
			
		||||
 | 
			
		||||
**Clarify with your interviewer if you should run back-of-the-envelope usage calculations.**
 | 
			
		||||
 | 
			
		||||
* Cache stores ordered list of key: query, value: results
 | 
			
		||||
    * `query` - 50 bytes
 | 
			
		||||
    * `title` - 20 bytes
 | 
			
		||||
    * `snippet` - 200 bytes
 | 
			
		||||
    * Total: 270 bytes
 | 
			
		||||
* 2.7 TB of cache data per month if all 10 billion queries are unique and all are stored
 | 
			
		||||
    * 270 bytes per search * 10 billion searches per month
 | 
			
		||||
    * Assumptions state limited memory, need to determine how to expire contents
 | 
			
		||||
* 4,000 requests per second
 | 
			
		||||
 | 
			
		||||
Handy conversion guide:
 | 
			
		||||
 | 
			
		||||
* 2.5 million seconds per month
 | 
			
		||||
* 1 request per second = 2.5 million requests per month
 | 
			
		||||
* 40 requests per second = 100 million requests per month
 | 
			
		||||
* 400 requests per second = 1 billion requests per month
 | 
			
		||||
 | 
			
		||||
## Step 2: Create a high level design
 | 
			
		||||
 | 
			
		||||
> Outline a high level design with all important components.
 | 
			
		||||
 | 
			
		||||

 | 
			
		||||
 | 
			
		||||
## Step 3: Design core components
 | 
			
		||||
 | 
			
		||||
> Dive into details for each core component.
 | 
			
		||||
 | 
			
		||||
### Use case: User sends a request resulting in a cache hit
 | 
			
		||||
 | 
			
		||||
Popular queries can be served from a **Memory Cache** such as Redis or Memcached to reduce read latency and to avoid overloading the **Reverse Index Service** and **Document Service**.  Reading 1 MB sequentially from memory takes about 250 microseconds, while reading from SSD takes 4x and from disk takes 80x longer.<sup><a href=https://github.com/donnemartin/system-design-primer-interview#latency-numbers-every-programmer-should-know>1</a></sup>
 | 
			
		||||
 | 
			
		||||
Since the cache has limited capacity, we'll use a least recently used (LRU) approach to expire older entries.
 | 
			
		||||
 | 
			
		||||
* The **Client** sends a request to the **Web Server**, running as a [reverse proxy](https://github.com/donnemartin/system-design-primer-interview#reverse-proxy-web-server)
 | 
			
		||||
* The **Web Server** forwards the request to the **Query API** server
 | 
			
		||||
* The **Query API** server does the following:
 | 
			
		||||
    * Parses the query
 | 
			
		||||
        * Removes markup
 | 
			
		||||
        * Breaks up the text into terms
 | 
			
		||||
        * Fixes typos
 | 
			
		||||
        * Normalizes capitalization
 | 
			
		||||
        * Converts the query to use boolean operations
 | 
			
		||||
    * Checks the **Memory Cache** for the content matching the query
 | 
			
		||||
        * If there's a hit in the **Memory Cache**, the **Memory Cache** does the following:
 | 
			
		||||
            * Updates the cached entry's position to the front of the LRU list
 | 
			
		||||
            * Returns the cached contents
 | 
			
		||||
        * Else, the **Query API** does the following:
 | 
			
		||||
            * Uses the **Reverse Index Service** to find documents matching the query
 | 
			
		||||
                * The **Reverse Index Service** ranks the matching results and returns the top ones
 | 
			
		||||
            * Uses the **Document Service** to return titles and snippets
 | 
			
		||||
            * Updates the **Memory Cache** with the contents, placing the entry at the front of the LRU list
 | 
			
		||||
 | 
			
		||||
#### Cache implementation
 | 
			
		||||
 | 
			
		||||
The cache can use a doubly-linked list: new items will be added to the head while items to expire will be removed from the tail.  We'll use a hash table for fast lookups to each linked list node.
 | 
			
		||||
 | 
			
		||||
**Clarify with your interviewer how much code you are expected to write**.
 | 
			
		||||
 | 
			
		||||
**Query API Server** implementation:
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
class QueryApi(object):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, memory_cache, reverse_index_service):
 | 
			
		||||
        self.memory_cache = memory_cache
 | 
			
		||||
        self.reverse_index_service = reverse_index_service
 | 
			
		||||
 | 
			
		||||
    def parse_query(self, query):
 | 
			
		||||
        """Remove markup, break text into terms, deal with typos,
 | 
			
		||||
        normalize capitalization, convert to use boolean operations.
 | 
			
		||||
        """
 | 
			
		||||
        ...
 | 
			
		||||
 | 
			
		||||
    def process_query(self, query):
 | 
			
		||||
        query = self.parse_query(query)
 | 
			
		||||
        results = self.memory_cache.get(query)
 | 
			
		||||
        if results is None:
 | 
			
		||||
            results = self.reverse_index_service.process_search(query)
 | 
			
		||||
            self.memory_cache.set(query, results)
 | 
			
		||||
        return results
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
**Node** implementation:
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
class Node(object):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, query, results):
 | 
			
		||||
        self.query = query
 | 
			
		||||
        self.results = results
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
**LinkedList** implementation:
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
class LinkedList(object):
 | 
			
		||||
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        self.head = None
 | 
			
		||||
        self.tail = None
 | 
			
		||||
 | 
			
		||||
    def move_to_front(self, node):
 | 
			
		||||
        ...
 | 
			
		||||
 | 
			
		||||
    def append_to_front(self, node):
 | 
			
		||||
        ...
 | 
			
		||||
 | 
			
		||||
    def remove_from_tail(self):
 | 
			
		||||
        ...
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
**Cache** implementation:
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
class Cache(object):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, MAX_SIZE):
 | 
			
		||||
        self.MAX_SIZE = MAX_SIZE
 | 
			
		||||
        self.size = 0
 | 
			
		||||
        self.lookup = {}  # key: query, value: node
 | 
			
		||||
        self.linked_list = LinkedList()
 | 
			
		||||
 | 
			
		||||
    def get(self, query)
 | 
			
		||||
        """Get the stored query result from the cache.
 | 
			
		||||
 | 
			
		||||
        Accessing a node updates its position to the front of the LRU list.
 | 
			
		||||
        """
 | 
			
		||||
        node = self.lookup[query]
 | 
			
		||||
        if node is None:
 | 
			
		||||
            return None
 | 
			
		||||
        self.linked_list.move_to_front(node)
 | 
			
		||||
        return node.results
 | 
			
		||||
 | 
			
		||||
    def set(self, results, query):
 | 
			
		||||
        """Set the result for the given query key in the cache.
 | 
			
		||||
 | 
			
		||||
        When updating an entry, updates its position to the front of the LRU list.
 | 
			
		||||
        If the entry is new and the cache is at capacity, removes the oldest entry
 | 
			
		||||
        before the new entry is added.
 | 
			
		||||
        """
 | 
			
		||||
        node = self.lookup[query]
 | 
			
		||||
        if node is not None:
 | 
			
		||||
            # Key exists in cache, update the value
 | 
			
		||||
            node.results = results
 | 
			
		||||
            self.linked_list.move_to_front(node)
 | 
			
		||||
        else:
 | 
			
		||||
            # Key does not exist in cache
 | 
			
		||||
            if self.size == self.MAX_SIZE:
 | 
			
		||||
                # Remove the oldest entry from the linked list and lookup
 | 
			
		||||
                self.lookup.pop(self.linked_list.tail.query, None)
 | 
			
		||||
                self.linked_list.remove_from_tail()
 | 
			
		||||
            else:
 | 
			
		||||
                self.size += 1
 | 
			
		||||
            # Add the new key and value
 | 
			
		||||
            new_node = Node(query, results)
 | 
			
		||||
            self.linked_list.append_to_front(new_node)
 | 
			
		||||
            self.lookup[query] = new_node
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### When to update the cache
 | 
			
		||||
 | 
			
		||||
The cache should be updated when:
 | 
			
		||||
 | 
			
		||||
* The page contents change
 | 
			
		||||
* The page is removed or a new page is added
 | 
			
		||||
* The page rank changes
 | 
			
		||||
 | 
			
		||||
The most straightforward way to handle these cases is to simply set a max time that a cached entry can stay in the cache before it is updated, usually referred to as time to live (TTL).
 | 
			
		||||
 | 
			
		||||
Refer to [When to update the cache](https://github.com/donnemartin/system-design-primer-interview#when-to-update-the-cache) for tradeoffs and alternatives.  The approach above describes [cache-aside](https://github.com/donnemartin/system-design-primer-interview#cache-aside).
 | 
			
		||||
 | 
			
		||||
## Step 4: Scale the design
 | 
			
		||||
 | 
			
		||||
> Identify and address bottlenecks, given the constraints.
 | 
			
		||||
 | 
			
		||||

 | 
			
		||||
 | 
			
		||||
**Important: Do not simply jump right into the final design from the initial design!**
 | 
			
		||||
 | 
			
		||||
State you would 1) **Benchmark/Load Test**, 2) **Profile** for bottlenecks 3) address bottlenecks while evaluating alternatives and trade-offs, and 4) repeat.  See [Design a system that scales to millions of users on AWS]() as a sample on how to iteratively scale the initial design.
 | 
			
		||||
 | 
			
		||||
It's important to discuss what bottlenecks you might encounter with the initial design and how you might address each of them.  For example, what issues are addressed by adding a **Load Balancer** with multiple **Web Servers**?  **CDN**?  **Master-Slave Replicas**?  What are the alternatives and **Trade-Offs** for each?
 | 
			
		||||
 | 
			
		||||
We'll introduce some components to complete the design and to address scalability issues.  Internal load balancers are not shown to reduce clutter.
 | 
			
		||||
 | 
			
		||||
*To avoid repeating discussions*, refer to the following [system design topics](https://github.com/donnemartin/system-design-primer-interview#) for main talking points, tradeoffs, and alternatives:
 | 
			
		||||
 | 
			
		||||
* [DNS](https://github.com/donnemartin/system-design-primer-interview#domain-name-system)
 | 
			
		||||
* [Load balancer](https://github.com/donnemartin/system-design-primer-interview#load-balancer)
 | 
			
		||||
* [Horizontal scaling](https://github.com/donnemartin/system-design-primer-interview#horizontal-scaling)
 | 
			
		||||
* [Web server (reverse proxy)](https://github.com/donnemartin/system-design-primer-interview#reverse-proxy-web-server)
 | 
			
		||||
* [API server (application layer)](https://github.com/donnemartin/system-design-primer-interview#application-layer)
 | 
			
		||||
* [Cache](https://github.com/donnemartin/system-design-primer-interview#cache)
 | 
			
		||||
* [Consistency patterns](https://github.com/donnemartin/system-design-primer-interview#consistency-patterns)
 | 
			
		||||
* [Availability patterns](https://github.com/donnemartin/system-design-primer-interview#availability-patterns)
 | 
			
		||||
 | 
			
		||||
### Expanding the Memory Cache to many machines
 | 
			
		||||
 | 
			
		||||
To handle the heavy request load and the large amount of memory needed, we'll scale horizontally.  We have three main options on how to store the data on our **Memory Cache** cluster:
 | 
			
		||||
 | 
			
		||||
* **Each machine in the cache cluster has its own cache** - Simple, although it will likely result in a low cache hit rate.
 | 
			
		||||
* **Each machine in the cache cluster has a copy of the cache** - Simple, although it is an inefficient use of memory.
 | 
			
		||||
* **The cache is [sharded](https://github.com/donnemartin/system-design-primer-interview#sharding) across all machines in the cache cluster** - More complex, although it is likely the best option.  We could use hashing to determine which machine could have the cached results of a query using `machine = hash(query)`.  We'll likely want to use [consistent hashing](https://github.com/donnemartin/system-design-primer-interview#consistent-hashing).
 | 
			
		||||
 | 
			
		||||
## Additional talking points
 | 
			
		||||
 | 
			
		||||
> Additional topics to dive into, depending on the problem scope and time remaining.
 | 
			
		||||
 | 
			
		||||
### SQL scaling patterns
 | 
			
		||||
 | 
			
		||||
* [Read replicas](https://github.com/donnemartin/system-design-primer-interview#master-slave)
 | 
			
		||||
* [Federation](https://github.com/donnemartin/system-design-primer-interview#federation)
 | 
			
		||||
* [Sharding](https://github.com/donnemartin/system-design-primer-interview#sharding)
 | 
			
		||||
* [Denormalization](https://github.com/donnemartin/system-design-primer-interview#denormalization)
 | 
			
		||||
* [SQL Tuning](https://github.com/donnemartin/system-design-primer-interview#sql-tuning)
 | 
			
		||||
 | 
			
		||||
#### NoSQL
 | 
			
		||||
 | 
			
		||||
* [Key-value store](https://github.com/donnemartin/system-design-primer-interview#)
 | 
			
		||||
* [Document store](https://github.com/donnemartin/system-design-primer-interview#)
 | 
			
		||||
* [Wide column store](https://github.com/donnemartin/system-design-primer-interview#)
 | 
			
		||||
* [Graph database](https://github.com/donnemartin/system-design-primer-interview#)
 | 
			
		||||
* [SQL vs NoSQL](https://github.com/donnemartin/system-design-primer-interview#)
 | 
			
		||||
 | 
			
		||||
### Caching
 | 
			
		||||
 | 
			
		||||
* Where to cache
 | 
			
		||||
    * [Client caching](https://github.com/donnemartin/system-design-primer-interview#client-caching)
 | 
			
		||||
    * [CDN caching](https://github.com/donnemartin/system-design-primer-interview#cdn-caching)
 | 
			
		||||
    * [Web server caching](https://github.com/donnemartin/system-design-primer-interview#web-server-caching)
 | 
			
		||||
    * [Database caching](https://github.com/donnemartin/system-design-primer-interview#database-caching)
 | 
			
		||||
    * [Application caching](https://github.com/donnemartin/system-design-primer-interview#application-caching)
 | 
			
		||||
* What to cache
 | 
			
		||||
    * [Caching at the database query level](https://github.com/donnemartin/system-design-primer-interview#caching-at-the-database-query-level)
 | 
			
		||||
    * [Caching at the object level](https://github.com/donnemartin/system-design-primer-interview#caching-at-the-object-level)
 | 
			
		||||
* When to update the cache
 | 
			
		||||
    * [Cache-aside](https://github.com/donnemartin/system-design-primer-interview#cache-aside)
 | 
			
		||||
    * [Write-through](https://github.com/donnemartin/system-design-primer-interview#write-through)
 | 
			
		||||
    * [Write-behind (write-back)](https://github.com/donnemartin/system-design-primer-interview#write-behind-write-back)
 | 
			
		||||
    * [Refresh ahead](https://github.com/donnemartin/system-design-primer-interview#refresh-ahead)
 | 
			
		||||
 | 
			
		||||
### Asynchronism and microservices
 | 
			
		||||
 | 
			
		||||
* [Message queues](https://github.com/donnemartin/system-design-primer-interview#)
 | 
			
		||||
* [Task queues](https://github.com/donnemartin/system-design-primer-interview#)
 | 
			
		||||
* [Back pressure](https://github.com/donnemartin/system-design-primer-interview#)
 | 
			
		||||
* [Microservices](https://github.com/donnemartin/system-design-primer-interview#)
 | 
			
		||||
 | 
			
		||||
### Communications
 | 
			
		||||
 | 
			
		||||
* Discuss tradeoffs:
 | 
			
		||||
    * External communication with clients - [HTTP APIs following REST](https://github.com/donnemartin/system-design-primer-interview#representational-state-transfer-rest)
 | 
			
		||||
    * Internal communications - [RPC](https://github.com/donnemartin/system-design-primer-interview#remote-procedure-call-rpc)
 | 
			
		||||
* [Service discovery](https://github.com/donnemartin/system-design-primer-interview#service-discovery)
 | 
			
		||||
 | 
			
		||||
### Security
 | 
			
		||||
 | 
			
		||||
Refer to the [security section](https://github.com/donnemartin/system-design-primer-interview#security).
 | 
			
		||||
 | 
			
		||||
### Latency numbers
 | 
			
		||||
 | 
			
		||||
See [Latency numbers every programmer should know](https://github.com/donnemartin/system-design-primer-interview#latency-numbers-every-programmer-should-know).
 | 
			
		||||
 | 
			
		||||
### Ongoing
 | 
			
		||||
 | 
			
		||||
* Continue benchmarking and monitoring your system to address bottlenecks as they come up
 | 
			
		||||
* Scaling is an iterative process
 | 
			
		||||
		Reference in New Issue
	
	Block a user