Add Query Cache solution
parent
a2e92178d7
commit
d484f80b18
|
@ -0,0 +1,306 @@
|
||||||
|
# Design a key-value cache to save the results of the most recent web server queries
|
||||||
|
|
||||||
|
*Note: This document links directly to relevant areas found in the [system design topics](https://github.com/donnemartin/system-design-primer-interview#index-of-system-design-topics-1) to avoid duplication. Refer to the linked content for general talking points, tradeoffs, and alternatives.*
|
||||||
|
|
||||||
|
## Step 1: Outline use cases and constraints
|
||||||
|
|
||||||
|
> Gather requirements and scope the problem.
|
||||||
|
> Ask questions to clarify use cases and constraints.
|
||||||
|
> Discuss assumptions.
|
||||||
|
|
||||||
|
Without an interviewer to address clarifying questions, we'll define some use cases and constraints.
|
||||||
|
|
||||||
|
### Use cases
|
||||||
|
|
||||||
|
#### We'll scope the problem to handle only the following use cases
|
||||||
|
|
||||||
|
* **User** sends a search request resulting in a cache hit
|
||||||
|
* **User** sends a search request resulting in a cache miss
|
||||||
|
* **Service** has high availability
|
||||||
|
|
||||||
|
### Constraints and assumptions
|
||||||
|
|
||||||
|
#### State assumptions
|
||||||
|
|
||||||
|
* Traffic is not evenly distributed
|
||||||
|
* Popular queries should almost always be in the cache
|
||||||
|
* Need to determine how to expire/refresh
|
||||||
|
* Serving from cache requires fast lookups
|
||||||
|
* Low latency between machines
|
||||||
|
* Limited memory in cache
|
||||||
|
* Need to determine what to keep/remove
|
||||||
|
* Need to cache millions of queries
|
||||||
|
* 10 million users
|
||||||
|
* 10 billion queries per month
|
||||||
|
|
||||||
|
#### Calculate usage
|
||||||
|
|
||||||
|
**Clarify with your interviewer if you should run back-of-the-envelope usage calculations.**
|
||||||
|
|
||||||
|
* Cache stores ordered list of key: query, value: results
|
||||||
|
* `query` - 50 bytes
|
||||||
|
* `title` - 20 bytes
|
||||||
|
* `snippet` - 200 bytes
|
||||||
|
* Total: 270 bytes
|
||||||
|
* 2.7 TB of cache data per month if all 10 billion queries are unique and all are stored
|
||||||
|
* 270 bytes per search * 10 billion searches per month
|
||||||
|
* Assumptions state limited memory, need to determine how to expire contents
|
||||||
|
* 4,000 requests per second
|
||||||
|
|
||||||
|
Handy conversion guide:
|
||||||
|
|
||||||
|
* 2.5 million seconds per month
|
||||||
|
* 1 request per second = 2.5 million requests per month
|
||||||
|
* 40 requests per second = 100 million requests per month
|
||||||
|
* 400 requests per second = 1 billion requests per month
|
||||||
|
|
||||||
|
## Step 2: Create a high level design
|
||||||
|
|
||||||
|
> Outline a high level design with all important components.
|
||||||
|
|
||||||
|
![Imgur](http://i.imgur.com/KqZ3dSx.png)
|
||||||
|
|
||||||
|
## Step 3: Design core components
|
||||||
|
|
||||||
|
> Dive into details for each core component.
|
||||||
|
|
||||||
|
### Use case: User sends a request resulting in a cache hit
|
||||||
|
|
||||||
|
Popular queries can be served from a **Memory Cache** such as Redis or Memcached to reduce read latency and to avoid overloading the **Reverse Index Service** and **Document Service**. Reading 1 MB sequentially from memory takes about 250 microseconds, while reading from SSD takes 4x and from disk takes 80x longer.<sup><a href=https://github.com/donnemartin/system-design-primer-interview#latency-numbers-every-programmer-should-know>1</a></sup>
|
||||||
|
|
||||||
|
Since the cache has limited capacity, we'll use a least recently used (LRU) approach to expire older entries.
|
||||||
|
|
||||||
|
* The **Client** sends a request to the **Web Server**, running as a [reverse proxy](https://github.com/donnemartin/system-design-primer-interview#reverse-proxy-web-server)
|
||||||
|
* The **Web Server** forwards the request to the **Query API** server
|
||||||
|
* The **Query API** server does the following:
|
||||||
|
* Parses the query
|
||||||
|
* Removes markup
|
||||||
|
* Breaks up the text into terms
|
||||||
|
* Fixes typos
|
||||||
|
* Normalizes capitalization
|
||||||
|
* Converts the query to use boolean operations
|
||||||
|
* Checks the **Memory Cache** for the content matching the query
|
||||||
|
* If there's a hit in the **Memory Cache**, the **Memory Cache** does the following:
|
||||||
|
* Updates the cached entry's position to the front of the LRU list
|
||||||
|
* Returns the cached contents
|
||||||
|
* Else, the **Query API** does the following:
|
||||||
|
* Uses the **Reverse Index Service** to find documents matching the query
|
||||||
|
* The **Reverse Index Service** ranks the matching results and returns the top ones
|
||||||
|
* Uses the **Document Service** to return titles and snippets
|
||||||
|
* Updates the **Memory Cache** with the contents, placing the entry at the front of the LRU list
|
||||||
|
|
||||||
|
#### Cache implementation
|
||||||
|
|
||||||
|
The cache can use a doubly-linked list: new items will be added to the head while items to expire will be removed from the tail. We'll use a hash table for fast lookups to each linked list node.
|
||||||
|
|
||||||
|
**Clarify with your interviewer how much code you are expected to write**.
|
||||||
|
|
||||||
|
**Query API Server** implementation:
|
||||||
|
|
||||||
|
```
|
||||||
|
class QueryApi(object):
|
||||||
|
|
||||||
|
def __init__(self, memory_cache, reverse_index_service):
|
||||||
|
self.memory_cache = memory_cache
|
||||||
|
self.reverse_index_service = reverse_index_service
|
||||||
|
|
||||||
|
def parse_query(self, query):
|
||||||
|
"""Remove markup, break text into terms, deal with typos,
|
||||||
|
normalize capitalization, convert to use boolean operations.
|
||||||
|
"""
|
||||||
|
...
|
||||||
|
|
||||||
|
def process_query(self, query):
|
||||||
|
query = self.parse_query(query)
|
||||||
|
results = self.memory_cache.get(query)
|
||||||
|
if results is None:
|
||||||
|
results = self.reverse_index_service.process_search(query)
|
||||||
|
self.memory_cache.set(query, results)
|
||||||
|
return results
|
||||||
|
```
|
||||||
|
|
||||||
|
**Node** implementation:
|
||||||
|
|
||||||
|
```
|
||||||
|
class Node(object):
|
||||||
|
|
||||||
|
def __init__(self, query, results):
|
||||||
|
self.query = query
|
||||||
|
self.results = results
|
||||||
|
```
|
||||||
|
|
||||||
|
**LinkedList** implementation:
|
||||||
|
|
||||||
|
```
|
||||||
|
class LinkedList(object):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.head = None
|
||||||
|
self.tail = None
|
||||||
|
|
||||||
|
def move_to_front(self, node):
|
||||||
|
...
|
||||||
|
|
||||||
|
def append_to_front(self, node):
|
||||||
|
...
|
||||||
|
|
||||||
|
def remove_from_tail(self):
|
||||||
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
**Cache** implementation:
|
||||||
|
|
||||||
|
```
|
||||||
|
class Cache(object):
|
||||||
|
|
||||||
|
def __init__(self, MAX_SIZE):
|
||||||
|
self.MAX_SIZE = MAX_SIZE
|
||||||
|
self.size = 0
|
||||||
|
self.lookup = {} # key: query, value: node
|
||||||
|
self.linked_list = LinkedList()
|
||||||
|
|
||||||
|
def get(self, query)
|
||||||
|
"""Get the stored query result from the cache.
|
||||||
|
|
||||||
|
Accessing a node updates its position to the front of the LRU list.
|
||||||
|
"""
|
||||||
|
node = self.lookup[query]
|
||||||
|
if node is None:
|
||||||
|
return None
|
||||||
|
self.linked_list.move_to_front(node)
|
||||||
|
return node.results
|
||||||
|
|
||||||
|
def set(self, results, query):
|
||||||
|
"""Set the result for the given query key in the cache.
|
||||||
|
|
||||||
|
When updating an entry, updates its position to the front of the LRU list.
|
||||||
|
If the entry is new and the cache is at capacity, removes the oldest entry
|
||||||
|
before the new entry is added.
|
||||||
|
"""
|
||||||
|
node = self.lookup[query]
|
||||||
|
if node is not None:
|
||||||
|
# Key exists in cache, update the value
|
||||||
|
node.results = results
|
||||||
|
self.linked_list.move_to_front(node)
|
||||||
|
else:
|
||||||
|
# Key does not exist in cache
|
||||||
|
if self.size == self.MAX_SIZE:
|
||||||
|
# Remove the oldest entry from the linked list and lookup
|
||||||
|
self.lookup.pop(self.linked_list.tail.query, None)
|
||||||
|
self.linked_list.remove_from_tail()
|
||||||
|
else:
|
||||||
|
self.size += 1
|
||||||
|
# Add the new key and value
|
||||||
|
new_node = Node(query, results)
|
||||||
|
self.linked_list.append_to_front(new_node)
|
||||||
|
self.lookup[query] = new_node
|
||||||
|
```
|
||||||
|
|
||||||
|
#### When to update the cache
|
||||||
|
|
||||||
|
The cache should be updated when:
|
||||||
|
|
||||||
|
* The page contents change
|
||||||
|
* The page is removed or a new page is added
|
||||||
|
* The page rank changes
|
||||||
|
|
||||||
|
The most straightforward way to handle these cases is to simply set a max time that a cached entry can stay in the cache before it is updated, usually referred to as time to live (TTL).
|
||||||
|
|
||||||
|
Refer to [When to update the cache](https://github.com/donnemartin/system-design-primer-interview#when-to-update-the-cache) for tradeoffs and alternatives. The approach above describes [cache-aside](https://github.com/donnemartin/system-design-primer-interview#cache-aside).
|
||||||
|
|
||||||
|
## Step 4: Scale the design
|
||||||
|
|
||||||
|
> Identify and address bottlenecks, given the constraints.
|
||||||
|
|
||||||
|
![Imgur](http://i.imgur.com/4j99mhe.png)
|
||||||
|
|
||||||
|
**Important: Do not simply jump right into the final design from the initial design!**
|
||||||
|
|
||||||
|
State you would 1) **Benchmark/Load Test**, 2) **Profile** for bottlenecks 3) address bottlenecks while evaluating alternatives and trade-offs, and 4) repeat. See [Design a system that scales to millions of users on AWS]() as a sample on how to iteratively scale the initial design.
|
||||||
|
|
||||||
|
It's important to discuss what bottlenecks you might encounter with the initial design and how you might address each of them. For example, what issues are addressed by adding a **Load Balancer** with multiple **Web Servers**? **CDN**? **Master-Slave Replicas**? What are the alternatives and **Trade-Offs** for each?
|
||||||
|
|
||||||
|
We'll introduce some components to complete the design and to address scalability issues. Internal load balancers are not shown to reduce clutter.
|
||||||
|
|
||||||
|
*To avoid repeating discussions*, refer to the following [system design topics](https://github.com/donnemartin/system-design-primer-interview#) for main talking points, tradeoffs, and alternatives:
|
||||||
|
|
||||||
|
* [DNS](https://github.com/donnemartin/system-design-primer-interview#domain-name-system)
|
||||||
|
* [Load balancer](https://github.com/donnemartin/system-design-primer-interview#load-balancer)
|
||||||
|
* [Horizontal scaling](https://github.com/donnemartin/system-design-primer-interview#horizontal-scaling)
|
||||||
|
* [Web server (reverse proxy)](https://github.com/donnemartin/system-design-primer-interview#reverse-proxy-web-server)
|
||||||
|
* [API server (application layer)](https://github.com/donnemartin/system-design-primer-interview#application-layer)
|
||||||
|
* [Cache](https://github.com/donnemartin/system-design-primer-interview#cache)
|
||||||
|
* [Consistency patterns](https://github.com/donnemartin/system-design-primer-interview#consistency-patterns)
|
||||||
|
* [Availability patterns](https://github.com/donnemartin/system-design-primer-interview#availability-patterns)
|
||||||
|
|
||||||
|
### Expanding the Memory Cache to many machines
|
||||||
|
|
||||||
|
To handle the heavy request load and the large amount of memory needed, we'll scale horizontally. We have three main options on how to store the data on our **Memory Cache** cluster:
|
||||||
|
|
||||||
|
* **Each machine in the cache cluster has its own cache** - Simple, although it will likely result in a low cache hit rate.
|
||||||
|
* **Each machine in the cache cluster has a copy of the cache** - Simple, although it is an inefficient use of memory.
|
||||||
|
* **The cache is [sharded](https://github.com/donnemartin/system-design-primer-interview#sharding) across all machines in the cache cluster** - More complex, although it is likely the best option. We could use hashing to determine which machine could have the cached results of a query using `machine = hash(query)`. We'll likely want to use [consistent hashing](https://github.com/donnemartin/system-design-primer-interview#consistent-hashing).
|
||||||
|
|
||||||
|
## Additional talking points
|
||||||
|
|
||||||
|
> Additional topics to dive into, depending on the problem scope and time remaining.
|
||||||
|
|
||||||
|
### SQL scaling patterns
|
||||||
|
|
||||||
|
* [Read replicas](https://github.com/donnemartin/system-design-primer-interview#master-slave)
|
||||||
|
* [Federation](https://github.com/donnemartin/system-design-primer-interview#federation)
|
||||||
|
* [Sharding](https://github.com/donnemartin/system-design-primer-interview#sharding)
|
||||||
|
* [Denormalization](https://github.com/donnemartin/system-design-primer-interview#denormalization)
|
||||||
|
* [SQL Tuning](https://github.com/donnemartin/system-design-primer-interview#sql-tuning)
|
||||||
|
|
||||||
|
#### NoSQL
|
||||||
|
|
||||||
|
* [Key-value store](https://github.com/donnemartin/system-design-primer-interview#)
|
||||||
|
* [Document store](https://github.com/donnemartin/system-design-primer-interview#)
|
||||||
|
* [Wide column store](https://github.com/donnemartin/system-design-primer-interview#)
|
||||||
|
* [Graph database](https://github.com/donnemartin/system-design-primer-interview#)
|
||||||
|
* [SQL vs NoSQL](https://github.com/donnemartin/system-design-primer-interview#)
|
||||||
|
|
||||||
|
### Caching
|
||||||
|
|
||||||
|
* Where to cache
|
||||||
|
* [Client caching](https://github.com/donnemartin/system-design-primer-interview#client-caching)
|
||||||
|
* [CDN caching](https://github.com/donnemartin/system-design-primer-interview#cdn-caching)
|
||||||
|
* [Web server caching](https://github.com/donnemartin/system-design-primer-interview#web-server-caching)
|
||||||
|
* [Database caching](https://github.com/donnemartin/system-design-primer-interview#database-caching)
|
||||||
|
* [Application caching](https://github.com/donnemartin/system-design-primer-interview#application-caching)
|
||||||
|
* What to cache
|
||||||
|
* [Caching at the database query level](https://github.com/donnemartin/system-design-primer-interview#caching-at-the-database-query-level)
|
||||||
|
* [Caching at the object level](https://github.com/donnemartin/system-design-primer-interview#caching-at-the-object-level)
|
||||||
|
* When to update the cache
|
||||||
|
* [Cache-aside](https://github.com/donnemartin/system-design-primer-interview#cache-aside)
|
||||||
|
* [Write-through](https://github.com/donnemartin/system-design-primer-interview#write-through)
|
||||||
|
* [Write-behind (write-back)](https://github.com/donnemartin/system-design-primer-interview#write-behind-write-back)
|
||||||
|
* [Refresh ahead](https://github.com/donnemartin/system-design-primer-interview#refresh-ahead)
|
||||||
|
|
||||||
|
### Asynchronism and microservices
|
||||||
|
|
||||||
|
* [Message queues](https://github.com/donnemartin/system-design-primer-interview#)
|
||||||
|
* [Task queues](https://github.com/donnemartin/system-design-primer-interview#)
|
||||||
|
* [Back pressure](https://github.com/donnemartin/system-design-primer-interview#)
|
||||||
|
* [Microservices](https://github.com/donnemartin/system-design-primer-interview#)
|
||||||
|
|
||||||
|
### Communications
|
||||||
|
|
||||||
|
* Discuss tradeoffs:
|
||||||
|
* External communication with clients - [HTTP APIs following REST](https://github.com/donnemartin/system-design-primer-interview#representational-state-transfer-rest)
|
||||||
|
* Internal communications - [RPC](https://github.com/donnemartin/system-design-primer-interview#remote-procedure-call-rpc)
|
||||||
|
* [Service discovery](https://github.com/donnemartin/system-design-primer-interview#service-discovery)
|
||||||
|
|
||||||
|
### Security
|
||||||
|
|
||||||
|
Refer to the [security section](https://github.com/donnemartin/system-design-primer-interview#security).
|
||||||
|
|
||||||
|
### Latency numbers
|
||||||
|
|
||||||
|
See [Latency numbers every programmer should know](https://github.com/donnemartin/system-design-primer-interview#latency-numbers-every-programmer-should-know).
|
||||||
|
|
||||||
|
### Ongoing
|
||||||
|
|
||||||
|
* Continue benchmarking and monitoring your system to address bottlenecks as they come up
|
||||||
|
* Scaling is an iterative process
|
Binary file not shown.
After Width: | Height: | Size: 108 KiB |
Binary file not shown.
After Width: | Height: | Size: 60 KiB |
|
@ -0,0 +1,89 @@
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
class QueryApi(object):
|
||||||
|
|
||||||
|
def __init__(self, memory_cache, reverse_index_cluster):
|
||||||
|
self.memory_cache = memory_cache
|
||||||
|
self.reverse_index_cluster = reverse_index_cluster
|
||||||
|
|
||||||
|
def parse_query(self, query):
|
||||||
|
"""Remove markup, break text into terms, deal with typos,
|
||||||
|
normalize capitalization, convert to use boolean operations.
|
||||||
|
"""
|
||||||
|
...
|
||||||
|
|
||||||
|
def process_query(self, query):
|
||||||
|
query = self.parse_query(query)
|
||||||
|
results = self.memory_cache.get(query)
|
||||||
|
if results is None:
|
||||||
|
results = self.reverse_index_cluster.process_search(query)
|
||||||
|
self.memory_cache.set(query, results)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
class Node(object):
|
||||||
|
|
||||||
|
def __init__(self, query, results):
|
||||||
|
self.query = query
|
||||||
|
self.results = results
|
||||||
|
|
||||||
|
|
||||||
|
class LinkedList(object):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.head = None
|
||||||
|
self.tail = None
|
||||||
|
|
||||||
|
def move_to_front(self, node):
|
||||||
|
...
|
||||||
|
|
||||||
|
def append_to_front(self, node):
|
||||||
|
...
|
||||||
|
|
||||||
|
def remove_from_tail(self):
|
||||||
|
...
|
||||||
|
|
||||||
|
|
||||||
|
class Cache(object):
|
||||||
|
|
||||||
|
def __init__(self, MAX_SIZE):
|
||||||
|
self.MAX_SIZE = MAX_SIZE
|
||||||
|
self.size = 0
|
||||||
|
self.lookup = {}
|
||||||
|
self.linked_list = LinkedList()
|
||||||
|
|
||||||
|
def get(self, query)
|
||||||
|
"""Get the stored query result from the cache.
|
||||||
|
|
||||||
|
Accessing a node updates its position to the front of the LRU list.
|
||||||
|
"""
|
||||||
|
node = self.lookup[query]
|
||||||
|
if node is None:
|
||||||
|
return None
|
||||||
|
self.linked_list.move_to_front(node)
|
||||||
|
return node.results
|
||||||
|
|
||||||
|
def set(self, results, query):
|
||||||
|
"""Set the result for the given query key in the cache.
|
||||||
|
|
||||||
|
When updating an entry, updates its position to the front of the LRU list.
|
||||||
|
If the entry is new and the cache is at capacity, removes the oldest entry
|
||||||
|
before the new entry is added.
|
||||||
|
"""
|
||||||
|
node = self.map[query]
|
||||||
|
if node is not None:
|
||||||
|
# Key exists in cache, update the value
|
||||||
|
node.results = results
|
||||||
|
self.linked_list.move_to_front(node)
|
||||||
|
else:
|
||||||
|
# Key does not exist in cache
|
||||||
|
if self.size == self.MAX_SIZE:
|
||||||
|
# Remove the oldest entry from the linked list and lookup
|
||||||
|
self.lookup.pop(self.linked_list.tail.query, None)
|
||||||
|
self.linked_list.remove_from_tail()
|
||||||
|
else:
|
||||||
|
self.size += 1
|
||||||
|
# Add the new key and value
|
||||||
|
new_node = Node(query, results)
|
||||||
|
self.linked_list.append_to_front(new_node)
|
||||||
|
self.lookup[query] = new_node
|
Loading…
Reference in New Issue