
Step 1: Outline use cases and constraints

Use cases

• Video streaming/CDN

o OpenConnect

o After user hits the play button on a video, app gets list of CDN URL’s and further

video streaming comes from CDN network.

• Backend/Service

Handles everything except video streaming.

o Video onboarding (uploading)

▪ Preprocessing

• Validation

• Converting to different formats (mp3, 3gp…) and resolutions.

o 1200 different device types

o Network bandwidth optimization

o Highly available

• Client

o Netflix application

▪ User home page

▪ Search

▪ Watch video

o Video onboarding client

▪ Upload high quality videos

Out of scope
• Data analytics

Constraints and assumptions

State assumptions

• 180M subscribers

• 200+ countries

• 2200 different client devices

• Traffic is not evenly distributed

Calculate usage.

• Standard plan (1 user at a time per subscription)

• 200M users/day

o 2.5K users/sec

• Processed video size, avg. 500MB

• 400M watched movies/day

o 5K movies/s

o ~ 5K searches/s

o 200PB/day

o 2.3TB/s

• 500 movies uploaded/day

o 250GB/day

o 5.8MB/s

o 460TB in 5 years

• It is out of scope, data analytics part, it is good to know.

o 500B data events to persist (write),

o 1.3 PB/day , 15GB/s

o 8M events during peak time (24G/sec)

▪ Error logs

▪ UI activities

▪ Video viewing activities

▪ Performance events

▪ Diagnostic

▪ …..

o 9:1 write to read ratio

▪ 1.6GB/s read

Just to better

understand how

much has to be

wrote.

Step 2: Create a high level design

Step 3: Design core components

Use case: Video onboarding.

• Client (Video onboarding) uploads a high-quality video to the Web Server which acts as API

gateway and reverse proxy.

• Web Server routes request to the Transcoder Service

• Transcoder Service

o Validates video and saves it in Object Store.

o Informs all interested services that video is onboarded, Videos Service, which needs

to know about a new content (status = soon).

o Publish a message/task to the queue about video transcode.

o Transcode Worker

▪ Consume a message/task.

▪ Download a video from Object Store, creates multiple replicas in different

formats and resolutions.

▪ Uploads created replicas to the Output Object Store

▪ Informs Videos Service that a video is available for watching (status = active).

▪ Informs Search Service that video is available.

REST

Request

POST /api/v1/transcode

{

 title,

 content

}

Response

{

 Status: 202

}

Status 202: means that request has been accepted and is going to be processed later

(asynchronously)

https://netflix.com/api/v1/videos

Use case: Homepage.

• Client (Netflix app) user logged in.

• Client sends request to the Web Server which routes it to the Home Service.

• User view history (titles, gender, actors, release year, etc.), location, rates, device…. are

stored in User Service DB.

o Result of data analytics part of the system

• Videos Service serves user videos list, based on different criteria from user view history.

• Home Service assembles different categories of videos personalized to the logged user.

Users

id

4

name

50

subscriptionid

4

planid

4

countrid

4

Views

id

4

userid

4

videoid

4

watched_untill

10

created

10

Videos

id

4

categoryid

4

title

50

thumbnail_path

100

director

50

rank

2

actor

50

status

1

created

10

REST

Request

GET /api/v1/home?userid=123

Response

{

userid: 123,

videos:

[

{

 thumbnail,

category,

rank,

watched_until

},

{

 thumbnail,

category,

rank,

watched_until

}

]

}

https://netflix.com/api/v1/videos?userid=123

Use case: Search a video

• Client requests a video by its title.

• Web Server forwards request the full text Search Service.

• Search Service return results ranked by different criteria (user preference, user location or

overall popularity, similar content, release date…)

REST

Request

GET /api/v1/search?title=once_upon_a_time

Response

{

title: once upon a time…,

videos:

[

{

 thumbnail,

 rank

},

{

 thumbnail,

rank

}

]

}

https://netflix.com/api/v1/videos?title=once_upon_a_time

Use case: Play a video

• User hits a play button on selected video.

• Netflix Client sends a request to the Web Server

• Web Server forwards request to Playback Service

• Playback Service according to user data (devices, locations), analyzed history data about

network from that locations (ISP) selects a list of the most appropriate and reliable CDN servers

and replies with a list of URL’s

• Smart Netflix Client depends on the network bandwidth status, location switches on the fly

between received list of CDN servers.

• CDN servers streams video content to the Client

Step 4: Scale the design

After

• Benchmark/Load Test,

• Profile for bottlenecks,

• Address bottlenecks while evaluating alternatives and trade-offs,

• Repeat.

Web Server is a bottleneck, particularly during peak days and hours, single point of failure and has to

be horizontally scaled. High availability dictates adequate failover and replication patterns

implementation. Because there is no constant high demands, weekends are under the heaviest impact,

autoscaling is the right measure.

Which server, database is the most appropriate for the requested job? Load Balancer is going to

decide. To protect against failure multiple load balancers must be set up.

How microservices are going to be implemented and integrated can be discussed, but some other time.

Right now, it is important to understand that they have to do one thing, be autonomous, reactive,

isolated, resilient, stateless, independently deployable, replaceable, observable, etc. There are

competent authors on this subject like Eric Evans, Vaughn Vernon, Sam Newman… Microservices are

going to be horizontally scaled in terms of high availability request and better overall performance.

Amount of data and level of I/O interactions implies that some RDMBS databases have to be replicated

and some replaced with NoSQL solution, more appropriate for big amount of data and heavy write and

read, e.g., user view history data. Some data, like video thumbnail can be moved to Object Store.

To reduce the number of hits to databases and improve response times, in-memory caching can be

used for the most frequent requests. In-Memory caches, Redis or Memcached, key-value stores, can

be used as an application cache solution.

Highly intensive and demanding video transcoding has to be done asynchronously and in parallel

having multiple Transcode Workers.

