14 Commits

Author SHA1 Message Date
Kelsey Hightower
52eb26dad1 support arm64 and amd64 2025-04-09 23:11:35 -07:00
Kelsey Hightower
b2bf9fb2f6 add amd64 binaries 2025-04-08 08:44:52 -07:00
Kelsey Hightower
d1f7e159e1 document control plane status checks 2025-04-08 07:42:00 -07:00
Kelsey Hightower
b6e493e463 generate kube-apiserver server certificate 2025-04-08 07:30:28 -07:00
Kelsey Hightower
f377d2ad74 etcd supports arm64 2025-04-08 07:15:21 -07:00
Kelsey Hightower
86d51471b4 bridge CNI networking works with iptables 2025-04-07 17:46:00 -07:00
Kelsey Hightower
ea9178edae set kubelet hostname 2025-04-07 17:08:56 -07:00
Kelsey Hightower
c9690e523a bootstrap a single node etcd cluster 2025-04-06 19:12:43 -07:00
Kelsey Hightower
08b198f2a0 Update to Kubernetes 1.32.3 2025-04-06 18:32:30 -07:00
Elson Rodriguez
5a325c23d7 Updating software components to latest stable releases. Fix missing config, minor spelling/grammar/flow fixes.
The main purpose of this update is to make sure the guide still works with the newest version of all software. In running through the guide I found places to make bug fixes and minor improvements.
2024-11-20 23:03:00 -07:00
Kelsey Hightower
a9cb5f7ba5 Remove cloud provider and move to ARM64 2024-04-06 13:02:06 -07:00
Kelsey Hightower
79a3f79b27 Update to Kubernetes 1.21.0 2021-05-01 23:11:57 -07:00
Kelsey Hightower
ca96371e4d Update to Kubernetes 1.18.6 2020-07-18 00:42:18 -07:00
Kelsey Hightower
5c462220b7 Update to Kubernetes 1.15.3 2019-09-15 12:10:26 -07:00
40 changed files with 1537 additions and 2169 deletions

4
.gitignore vendored
View File

@@ -8,7 +8,7 @@ ca-csr.json
ca-key.pem
ca.csr
ca.pem
encryption-config.yaml
/encryption-config.yaml
kube-controller-manager-csr.json
kube-controller-manager-key.pem
kube-controller-manager.csr
@@ -47,3 +47,5 @@ service-account-key.pem
service-account.csr
service-account.pem
service-account-csr.json
*.swp
.idea/

3
COPYRIGHT.md Normal file
View File

@@ -0,0 +1,3 @@
# Copyright
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>

View File

@@ -1,32 +1,35 @@
# Kubernetes The Hard Way
This tutorial walks you through setting up Kubernetes the hard way. This guide is not for people looking for a fully automated command to bring up a Kubernetes cluster. If that's you then check out [Google Kubernetes Engine](https://cloud.google.com/kubernetes-engine), or the [Getting Started Guides](http://kubernetes.io/docs/getting-started-guides/).
Kubernetes The Hard Way is optimized for learning, which means taking the long route to ensure you understand each task required to bootstrap a Kubernetes cluster.
This tutorial walks you through setting up Kubernetes the hard way. This guide is not for someone looking for a fully automated tool to bring up a Kubernetes cluster. Kubernetes The Hard Way is optimized for learning, which means taking the long route to ensure you understand each task required to bootstrap a Kubernetes cluster.
> The results of this tutorial should not be viewed as production ready, and may receive limited support from the community, but don't let that stop you from learning!
## Copyright
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
## Target Audience
The target audience for this tutorial is someone planning to support a production Kubernetes cluster and wants to understand how everything fits together.
The target audience for this tutorial is someone who wants to understand the fundamentals of Kubernetes and how the core components fit together.
## Cluster Details
Kubernetes The Hard Way guides you through bootstrapping a highly available Kubernetes cluster with end-to-end encryption between components and RBAC authentication.
Kubernetes The Hard Way guides you through bootstrapping a basic Kubernetes cluster with all control plane components running on a single node, and two worker nodes, which is enough to learn the core concepts.
* [Kubernetes](https://github.com/kubernetes/kubernetes) 1.12.0
* [containerd Container Runtime](https://github.com/containerd/containerd) 1.2.0-rc.0
* [gVisor](https://github.com/google/gvisor) 50c283b9f56bb7200938d9e207355f05f79f0d17
* [CNI Container Networking](https://github.com/containernetworking/cni) 0.6.0
* [etcd](https://github.com/coreos/etcd) v3.3.9
* [CoreDNS](https://github.com/coredns/coredns) v1.2.2
Component versions:
* [kubernetes](https://github.com/kubernetes/kubernetes) v1.32.x
* [containerd](https://github.com/containerd/containerd) v2.1.x
* [cni](https://github.com/containernetworking/cni) v1.6.x
* [etcd](https://github.com/etcd-io/etcd) v3.6.x
## Labs
This tutorial assumes you have access to the [Google Cloud Platform](https://cloud.google.com). While GCP is used for basic infrastructure requirements the lessons learned in this tutorial can be applied to other platforms.
This tutorial requires four (4) ARM64 or AMD64 based virtual or physical machines connected to the same network.
* [Prerequisites](docs/01-prerequisites.md)
* [Installing the Client Tools](docs/02-client-tools.md)
* [Setting up the Jumpbox](docs/02-jumpbox.md)
* [Provisioning Compute Resources](docs/03-compute-resources.md)
* [Provisioning the CA and Generating TLS Certificates](docs/04-certificate-authority.md)
* [Generating Kubernetes Configuration Files for Authentication](docs/05-kubernetes-configuration-files.md)
@@ -36,6 +39,5 @@ This tutorial assumes you have access to the [Google Cloud Platform](https://clo
* [Bootstrapping the Kubernetes Worker Nodes](docs/09-bootstrapping-kubernetes-workers.md)
* [Configuring kubectl for Remote Access](docs/10-configuring-kubectl.md)
* [Provisioning Pod Network Routes](docs/11-pod-network-routes.md)
* [Deploying the DNS Cluster Add-on](docs/12-dns-addon.md)
* [Smoke Test](docs/13-smoke-test.md)
* [Cleaning Up](docs/14-cleanup.md)
* [Smoke Test](docs/12-smoke-test.md)
* [Cleaning Up](docs/13-cleanup.md)

206
ca.conf Normal file
View File

@@ -0,0 +1,206 @@
[req]
distinguished_name = req_distinguished_name
prompt = no
x509_extensions = ca_x509_extensions
[ca_x509_extensions]
basicConstraints = CA:TRUE
keyUsage = cRLSign, keyCertSign
[req_distinguished_name]
C = US
ST = Washington
L = Seattle
CN = CA
[admin]
distinguished_name = admin_distinguished_name
prompt = no
req_extensions = default_req_extensions
[admin_distinguished_name]
CN = admin
O = system:masters
# Service Accounts
#
# The Kubernetes Controller Manager leverages a key pair to generate
# and sign service account tokens as described in the
# [managing service accounts](https://kubernetes.io/docs/admin/service-accounts-admin/)
# documentation.
[service-accounts]
distinguished_name = service-accounts_distinguished_name
prompt = no
req_extensions = default_req_extensions
[service-accounts_distinguished_name]
CN = service-accounts
# Worker Nodes
#
# Kubernetes uses a [special-purpose authorization mode](https://kubernetes.io/docs/admin/authorization/node/)
# called Node Authorizer, that specifically authorizes API requests made
# by [Kubelets](https://kubernetes.io/docs/concepts/overview/components/#kubelet).
# In order to be authorized by the Node Authorizer, Kubelets must use a credential
# that identifies them as being in the `system:nodes` group, with a username
# of `system:node:<nodeName>`.
[node-0]
distinguished_name = node-0_distinguished_name
prompt = no
req_extensions = node-0_req_extensions
[node-0_req_extensions]
basicConstraints = CA:FALSE
extendedKeyUsage = clientAuth, serverAuth
keyUsage = critical, digitalSignature, keyEncipherment
nsCertType = client
nsComment = "Node-0 Certificate"
subjectAltName = DNS:node-0, IP:127.0.0.1
subjectKeyIdentifier = hash
[node-0_distinguished_name]
CN = system:node:node-0
O = system:nodes
C = US
ST = Washington
L = Seattle
[node-1]
distinguished_name = node-1_distinguished_name
prompt = no
req_extensions = node-1_req_extensions
[node-1_req_extensions]
basicConstraints = CA:FALSE
extendedKeyUsage = clientAuth, serverAuth
keyUsage = critical, digitalSignature, keyEncipherment
nsCertType = client
nsComment = "Node-1 Certificate"
subjectAltName = DNS:node-1, IP:127.0.0.1
subjectKeyIdentifier = hash
[node-1_distinguished_name]
CN = system:node:node-1
O = system:nodes
C = US
ST = Washington
L = Seattle
# Kube Proxy Section
[kube-proxy]
distinguished_name = kube-proxy_distinguished_name
prompt = no
req_extensions = kube-proxy_req_extensions
[kube-proxy_req_extensions]
basicConstraints = CA:FALSE
extendedKeyUsage = clientAuth, serverAuth
keyUsage = critical, digitalSignature, keyEncipherment
nsCertType = client
nsComment = "Kube Proxy Certificate"
subjectAltName = DNS:kube-proxy, IP:127.0.0.1
subjectKeyIdentifier = hash
[kube-proxy_distinguished_name]
CN = system:kube-proxy
O = system:node-proxier
C = US
ST = Washington
L = Seattle
# Controller Manager
[kube-controller-manager]
distinguished_name = kube-controller-manager_distinguished_name
prompt = no
req_extensions = kube-controller-manager_req_extensions
[kube-controller-manager_req_extensions]
basicConstraints = CA:FALSE
extendedKeyUsage = clientAuth, serverAuth
keyUsage = critical, digitalSignature, keyEncipherment
nsCertType = client
nsComment = "Kube Controller Manager Certificate"
subjectAltName = DNS:kube-controller-manager, IP:127.0.0.1
subjectKeyIdentifier = hash
[kube-controller-manager_distinguished_name]
CN = system:kube-controller-manager
O = system:kube-controller-manager
C = US
ST = Washington
L = Seattle
# Scheduler
[kube-scheduler]
distinguished_name = kube-scheduler_distinguished_name
prompt = no
req_extensions = kube-scheduler_req_extensions
[kube-scheduler_req_extensions]
basicConstraints = CA:FALSE
extendedKeyUsage = clientAuth, serverAuth
keyUsage = critical, digitalSignature, keyEncipherment
nsCertType = client
nsComment = "Kube Scheduler Certificate"
subjectAltName = DNS:kube-scheduler, IP:127.0.0.1
subjectKeyIdentifier = hash
[kube-scheduler_distinguished_name]
CN = system:kube-scheduler
O = system:system:kube-scheduler
C = US
ST = Washington
L = Seattle
# API Server
#
# The Kubernetes API server is automatically assigned the `kubernetes`
# internal dns name, which will be linked to the first IP address (`10.32.0.1`)
# from the address range (`10.32.0.0/24`) reserved for internal cluster
# services.
[kube-api-server]
distinguished_name = kube-api-server_distinguished_name
prompt = no
req_extensions = kube-api-server_req_extensions
[kube-api-server_req_extensions]
basicConstraints = CA:FALSE
extendedKeyUsage = clientAuth, serverAuth
keyUsage = critical, digitalSignature, keyEncipherment
nsCertType = client, server
nsComment = "Kube API Server Certificate"
subjectAltName = @kube-api-server_alt_names
subjectKeyIdentifier = hash
[kube-api-server_alt_names]
IP.0 = 127.0.0.1
IP.1 = 10.32.0.1
DNS.0 = kubernetes
DNS.1 = kubernetes.default
DNS.2 = kubernetes.default.svc
DNS.3 = kubernetes.default.svc.cluster
DNS.4 = kubernetes.svc.cluster.local
DNS.5 = server.kubernetes.local
DNS.6 = api-server.kubernetes.local
[kube-api-server_distinguished_name]
CN = kubernetes
C = US
ST = Washington
L = Seattle
[default_req_extensions]
basicConstraints = CA:FALSE
extendedKeyUsage = clientAuth
keyUsage = critical, digitalSignature, keyEncipherment
nsCertType = client
nsComment = "Admin Client Certificate"
subjectKeyIdentifier = hash

15
configs/10-bridge.conf Normal file
View File

@@ -0,0 +1,15 @@
{
"cniVersion": "1.0.0",
"name": "bridge",
"type": "bridge",
"bridge": "cni0",
"isGateway": true,
"ipMasq": true,
"ipam": {
"type": "host-local",
"ranges": [
[{"subnet": "SUBNET"}]
],
"routes": [{"dst": "0.0.0.0/0"}]
}
}

5
configs/99-loopback.conf Normal file
View File

@@ -0,0 +1,5 @@
{
"cniVersion": "1.1.0",
"name": "lo",
"type": "loopback"
}

View File

@@ -0,0 +1,13 @@
version = 2
[plugins."io.containerd.grpc.v1.cri"]
[plugins."io.containerd.grpc.v1.cri".containerd]
snapshotter = "overlayfs"
default_runtime_name = "runc"
[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc]
runtime_type = "io.containerd.runc.v2"
[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc.options]
SystemdCgroup = true
[plugins."io.containerd.grpc.v1.cri".cni]
bin_dir = "/opt/cni/bin"
conf_dir = "/etc/cni/net.d"

View File

@@ -0,0 +1,11 @@
kind: EncryptionConfiguration
apiVersion: apiserver.config.k8s.io/v1
resources:
- resources:
- secrets
providers:
- aescbc:
keys:
- name: key1
secret: ${ENCRYPTION_KEY}
- identity: {}

View File

@@ -0,0 +1,33 @@
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: system:kube-apiserver-to-kubelet
rules:
- apiGroups:
- ""
resources:
- nodes/proxy
- nodes/stats
- nodes/log
- nodes/spec
- nodes/metrics
verbs:
- "*"
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: system:kube-apiserver
namespace: ""
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:kube-apiserver-to-kubelet
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: kubernetes

View File

@@ -0,0 +1,6 @@
kind: KubeProxyConfiguration
apiVersion: kubeproxy.config.k8s.io/v1alpha1
clientConnection:
kubeconfig: "/var/lib/kube-proxy/kubeconfig"
mode: "iptables"
clusterCIDR: "10.200.0.0/16"

View File

@@ -0,0 +1,6 @@
apiVersion: kubescheduler.config.k8s.io/v1
kind: KubeSchedulerConfiguration
clientConnection:
kubeconfig: "/var/lib/kubernetes/kube-scheduler.kubeconfig"
leaderElection:
leaderElect: true

View File

@@ -0,0 +1,25 @@
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
address: "0.0.0.0"
authentication:
anonymous:
enabled: false
webhook:
enabled: true
x509:
clientCAFile: "/var/lib/kubelet/ca.crt"
authorization:
mode: Webhook
cgroupDriver: systemd
containerRuntimeEndpoint: "unix:///var/run/containerd/containerd.sock"
enableServer: true
failSwapOn: false
maxPods: 16
memorySwap:
swapBehavior: NoSwap
port: 10250
resolvConf: "/etc/resolv.conf"
registerNode: true
runtimeRequestTimeout: "15m"
tlsCertFile: "/var/lib/kubelet/kubelet.crt"
tlsPrivateKeyFile: "/var/lib/kubelet/kubelet.key"

View File

@@ -1,206 +0,0 @@
# Copyright 2016 The Kubernetes Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
apiVersion: v1
kind: Service
metadata:
name: kube-dns
namespace: kube-system
labels:
k8s-app: kube-dns
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/name: "KubeDNS"
spec:
selector:
k8s-app: kube-dns
clusterIP: 10.32.0.10
ports:
- name: dns
port: 53
protocol: UDP
- name: dns-tcp
port: 53
protocol: TCP
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: kube-dns
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
---
apiVersion: v1
kind: ConfigMap
metadata:
name: kube-dns
namespace: kube-system
labels:
addonmanager.kubernetes.io/mode: EnsureExists
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: kube-dns
namespace: kube-system
labels:
k8s-app: kube-dns
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
spec:
# replicas: not specified here:
# 1. In order to make Addon Manager do not reconcile this replicas parameter.
# 2. Default is 1.
# 3. Will be tuned in real time if DNS horizontal auto-scaling is turned on.
strategy:
rollingUpdate:
maxSurge: 10%
maxUnavailable: 0
selector:
matchLabels:
k8s-app: kube-dns
template:
metadata:
labels:
k8s-app: kube-dns
annotations:
scheduler.alpha.kubernetes.io/critical-pod: ''
spec:
tolerations:
- key: "CriticalAddonsOnly"
operator: "Exists"
volumes:
- name: kube-dns-config
configMap:
name: kube-dns
optional: true
containers:
- name: kubedns
image: gcr.io/google_containers/k8s-dns-kube-dns-amd64:1.14.7
resources:
# TODO: Set memory limits when we've profiled the container for large
# clusters, then set request = limit to keep this container in
# guaranteed class. Currently, this container falls into the
# "burstable" category so the kubelet doesn't backoff from restarting it.
limits:
memory: 170Mi
requests:
cpu: 100m
memory: 70Mi
livenessProbe:
httpGet:
path: /healthcheck/kubedns
port: 10054
scheme: HTTP
initialDelaySeconds: 60
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5
readinessProbe:
httpGet:
path: /readiness
port: 8081
scheme: HTTP
# we poll on pod startup for the Kubernetes master service and
# only setup the /readiness HTTP server once that's available.
initialDelaySeconds: 3
timeoutSeconds: 5
args:
- --domain=cluster.local.
- --dns-port=10053
- --config-dir=/kube-dns-config
- --v=2
env:
- name: PROMETHEUS_PORT
value: "10055"
ports:
- containerPort: 10053
name: dns-local
protocol: UDP
- containerPort: 10053
name: dns-tcp-local
protocol: TCP
- containerPort: 10055
name: metrics
protocol: TCP
volumeMounts:
- name: kube-dns-config
mountPath: /kube-dns-config
- name: dnsmasq
image: gcr.io/google_containers/k8s-dns-dnsmasq-nanny-amd64:1.14.7
livenessProbe:
httpGet:
path: /healthcheck/dnsmasq
port: 10054
scheme: HTTP
initialDelaySeconds: 60
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5
args:
- -v=2
- -logtostderr
- -configDir=/etc/k8s/dns/dnsmasq-nanny
- -restartDnsmasq=true
- --
- -k
- --cache-size=1000
- --no-negcache
- --log-facility=-
- --server=/cluster.local/127.0.0.1#10053
- --server=/in-addr.arpa/127.0.0.1#10053
- --server=/ip6.arpa/127.0.0.1#10053
ports:
- containerPort: 53
name: dns
protocol: UDP
- containerPort: 53
name: dns-tcp
protocol: TCP
# see: https://github.com/kubernetes/kubernetes/issues/29055 for details
resources:
requests:
cpu: 150m
memory: 20Mi
volumeMounts:
- name: kube-dns-config
mountPath: /etc/k8s/dns/dnsmasq-nanny
- name: sidecar
image: gcr.io/google_containers/k8s-dns-sidecar-amd64:1.14.7
livenessProbe:
httpGet:
path: /metrics
port: 10054
scheme: HTTP
initialDelaySeconds: 60
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5
args:
- --v=2
- --logtostderr
- --probe=kubedns,127.0.0.1:10053,kubernetes.default.svc.cluster.local,5,SRV
- --probe=dnsmasq,127.0.0.1:53,kubernetes.default.svc.cluster.local,5,SRV
ports:
- containerPort: 10054
name: metrics
protocol: TCP
resources:
requests:
memory: 20Mi
cpu: 10m
dnsPolicy: Default # Don't use cluster DNS.
serviceAccountName: kube-dns

View File

@@ -1,57 +1,33 @@
# Prerequisites
## Google Cloud Platform
In this lab you will review the machine requirements necessary to follow this tutorial.
This tutorial leverages the [Google Cloud Platform](https://cloud.google.com/) to streamline provisioning of the compute infrastructure required to bootstrap a Kubernetes cluster from the ground up. [Sign up](https://cloud.google.com/free/) for $300 in free credits.
## Virtual or Physical Machines
[Estimated cost](https://cloud.google.com/products/calculator/#id=78df6ced-9c50-48f8-a670-bc5003f2ddaa) to run this tutorial: $0.22 per hour ($5.39 per day).
This tutorial requires four (4) virtual or physical ARM64 or AMD64 machines running Debian 12 (bookworm). The following table lists the four machines and their CPU, memory, and storage requirements.
> The compute resources required for this tutorial exceed the Google Cloud Platform free tier.
| Name | Description | CPU | RAM | Storage |
|---------|------------------------|-----|-------|---------|
| jumpbox | Administration host | 1 | 512MB | 10GB |
| server | Kubernetes server | 1 | 2GB | 20GB |
| node-0 | Kubernetes worker node | 1 | 2GB | 20GB |
| node-1 | Kubernetes worker node | 1 | 2GB | 20GB |
## Google Cloud Platform SDK
How you provision the machines is up to you, the only requirement is that each machine meet the above system requirements including the machine specs and OS version. Once you have all four machines provisioned, verify the OS requirements by viewing the `/etc/os-release` file:
### Install the Google Cloud SDK
Follow the Google Cloud SDK [documentation](https://cloud.google.com/sdk/) to install and configure the `gcloud` command line utility.
Verify the Google Cloud SDK version is 218.0.0 or higher:
```
gcloud version
```bash
cat /etc/os-release
```
### Set a Default Compute Region and Zone
You should see something similar to the following output:
This tutorial assumes a default compute region and zone have been configured.
If you are using the `gcloud` command-line tool for the first time `init` is the easiest way to do this:
```
gcloud init
```text
PRETTY_NAME="Debian GNU/Linux 12 (bookworm)"
NAME="Debian GNU/Linux"
VERSION_ID="12"
VERSION="12 (bookworm)"
VERSION_CODENAME=bookworm
ID=debian
```
Otherwise set a default compute region:
```
gcloud config set compute/region us-west1
```
Set a default compute zone:
```
gcloud config set compute/zone us-west1-c
```
> Use the `gcloud compute zones list` command to view additional regions and zones.
## Running Commands in Parallel with tmux
[tmux](https://github.com/tmux/tmux/wiki) can be used to run commands on multiple compute instances at the same time. Labs in this tutorial may require running the same commands across multiple compute instances, in those cases consider using tmux and splitting a window into multiple panes with `synchronize-panes` enabled to speed up the provisioning process.
> The use of tmux is optional and not required to complete this tutorial.
![tmux screenshot](images/tmux-screenshot.png)
> Enable `synchronize-panes`: `ctrl+b` then `shift :`. Then type `set synchronize-panes on` at the prompt. To disable synchronization: `set synchronize-panes off`.
Next: [Installing the Client Tools](02-client-tools.md)
Next: [setting-up-the-jumpbox](02-jumpbox.md)

View File

@@ -1,117 +0,0 @@
# Installing the Client Tools
In this lab you will install the command line utilities required to complete this tutorial: [cfssl](https://github.com/cloudflare/cfssl), [cfssljson](https://github.com/cloudflare/cfssl), and [kubectl](https://kubernetes.io/docs/tasks/tools/install-kubectl).
## Install CFSSL
The `cfssl` and `cfssljson` command line utilities will be used to provision a [PKI Infrastructure](https://en.wikipedia.org/wiki/Public_key_infrastructure) and generate TLS certificates.
Download and install `cfssl` and `cfssljson` from the [cfssl repository](https://pkg.cfssl.org):
### OS X
```
curl -o cfssl https://pkg.cfssl.org/R1.2/cfssl_darwin-amd64
curl -o cfssljson https://pkg.cfssl.org/R1.2/cfssljson_darwin-amd64
```
```
chmod +x cfssl cfssljson
```
```
sudo mv cfssl cfssljson /usr/local/bin/
```
Some OS X users may experience problems using the pre-built binaries in which case [Homebrew](https://brew.sh) might be a better option:
```
brew install cfssl
```
### Linux
```
wget -q --show-progress --https-only --timestamping \
https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 \
https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64
```
```
chmod +x cfssl_linux-amd64 cfssljson_linux-amd64
```
```
sudo mv cfssl_linux-amd64 /usr/local/bin/cfssl
```
```
sudo mv cfssljson_linux-amd64 /usr/local/bin/cfssljson
```
### Verification
Verify `cfssl` version 1.2.0 or higher is installed:
```
cfssl version
```
> output
```
Version: 1.2.0
Revision: dev
Runtime: go1.6
```
> The cfssljson command line utility does not provide a way to print its version.
## Install kubectl
The `kubectl` command line utility is used to interact with the Kubernetes API Server. Download and install `kubectl` from the official release binaries:
### OS X
```
curl -o kubectl https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/darwin/amd64/kubectl
```
```
chmod +x kubectl
```
```
sudo mv kubectl /usr/local/bin/
```
### Linux
```
wget https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linux/amd64/kubectl
```
```
chmod +x kubectl
```
```
sudo mv kubectl /usr/local/bin/
```
### Verification
Verify `kubectl` version 1.12.0 or higher is installed:
```
kubectl version --client
```
> output
```
Client Version: version.Info{Major:"1", Minor:"12", GitVersion:"v1.12.0", GitCommit:"0ed33881dc4355495f623c6f22e7dd0b7632b7c0", GitTreeState:"clean", BuildDate:"2018-09-27T17:05:32Z", GoVersion:"go1.10.4", Compiler:"gc", Platform:"linux/amd64"}
```
Next: [Provisioning Compute Resources](03-compute-resources.md)

140
docs/02-jumpbox.md Normal file
View File

@@ -0,0 +1,140 @@
# Set Up The Jumpbox
In this lab you will set up one of the four machines to be a `jumpbox`. This machine will be used to run commands throughout this tutorial. While a dedicated machine is being used to ensure consistency, these commands can also be run from just about any machine including your personal workstation running macOS or Linux.
Think of the `jumpbox` as the administration machine that you will use as a home base when setting up your Kubernetes cluster from the ground up. Before we get started we need to install a few command line utilities and clone the Kubernetes The Hard Way git repository, which contains some additional configuration files that will be used to configure various Kubernetes components throughout this tutorial.
Log in to the `jumpbox`:
```bash
ssh root@jumpbox
```
All commands will be run as the `root` user. This is being done for the sake of convenience, and will help reduce the number of commands required to set everything up.
### Install Command Line Utilities
Now that you are logged into the `jumpbox` machine as the `root` user, you will install the command line utilities that will be used to preform various tasks throughout the tutorial.
```bash
{
apt-get update
apt-get -y install wget curl vim openssl git
}
```
### Sync GitHub Repository
Now it's time to download a copy of this tutorial which contains the configuration files and templates that will be used build your Kubernetes cluster from the ground up. Clone the Kubernetes The Hard Way git repository using the `git` command:
```bash
git clone --depth 1 \
https://github.com/kelseyhightower/kubernetes-the-hard-way.git
```
Change into the `kubernetes-the-hard-way` directory:
```bash
cd kubernetes-the-hard-way
```
This will be the working directory for the rest of the tutorial. If you ever get lost run the `pwd` command to verify you are in the right directory when running commands on the `jumpbox`:
```bash
pwd
```
```text
/root/kubernetes-the-hard-way
```
### Download Binaries
In this section you will download the binaries for the various Kubernetes components. The binaries will be stored in the `downloads` directory on the `jumpbox`, which will reduce the amount of internet bandwidth required to complete this tutorial as we avoid downloading the binaries multiple times for each machine in our Kubernetes cluster.
The binaries that will be downloaded are listed in either the `downloads-amd64.txt` or `downloads-arm64.txt` file depending on your hardware architecture, which you can review using the `cat` command:
```bash
cat downloads-$(dpkg --print-architecture).txt
```
Download the binaries into a directory called `downloads` using the `wget` command:
```bash
wget -q --show-progress \
--https-only \
--timestamping \
-P downloads \
-i downloads-$(dpkg --print-architecture).txt
```
Depending on your internet connection speed it may take a while to download over `500` megabytes of binaries, and once the download is complete, you can list them using the `ls` command:
```bash
ls -oh downloads
```
Extract the component binaries from the release archives and organize them under the `downloads` directory.
```bash
{
ARCH=$(dpkg --print-architecture)
mkdir -p downloads/{client,cni-plugins,controller,worker}
tar -xvf downloads/crictl-v1.32.0-linux-${ARCH}.tar.gz \
-C downloads/worker/
tar -xvf downloads/containerd-2.1.0-beta.0-linux-${ARCH}.tar.gz \
--strip-components 1 \
-C downloads/worker/
tar -xvf downloads/cni-plugins-linux-${ARCH}-v1.6.2.tgz \
-C downloads/cni-plugins/
tar -xvf downloads/etcd-v3.6.0-rc.3-linux-${ARCH}.tar.gz \
-C downloads/ \
--strip-components 1 \
etcd-v3.6.0-rc.3-linux-${ARCH}/etcdctl \
etcd-v3.6.0-rc.3-linux-${ARCH}/etcd
mv downloads/{etcdctl,kubectl} downloads/client/
mv downloads/{etcd,kube-apiserver,kube-controller-manager,kube-scheduler} \
downloads/controller/
mv downloads/{kubelet,kube-proxy} downloads/worker/
mv downloads/runc.${ARCH} downloads/worker/runc
}
```
```bash
rm -rf downloads/*gz
```
Make the binaries executable.
```bash
{
chmod +x downloads/{client,cni-plugins,controller,worker}/*
}
```
### Install kubectl
In this section you will install the `kubectl`, the official Kubernetes client command line tool, on the `jumpbox` machine. `kubectl` will be used to interact with the Kubernetes control plane once your cluster is provisioned later in this tutorial.
Use the `chmod` command to make the `kubectl` binary executable and move it to the `/usr/local/bin/` directory:
```bash
{
cp downloads/client/kubectl /usr/local/bin/
}
```
At this point `kubectl` is installed and can be verified by running the `kubectl` command:
```bash
kubectl version --client
```
```text
Client Version: v1.32.3
Kustomize Version: v5.5.0
```
At this point the `jumpbox` has been set up with all the command line tools and utilities necessary to complete the labs in this tutorial.
Next: [Provisioning Compute Resources](03-compute-resources.md)

View File

@@ -1,230 +1,224 @@
# Provisioning Compute Resources
Kubernetes requires a set of machines to host the Kubernetes control plane and the worker nodes where containers are ultimately run. In this lab you will provision the compute resources required for running a secure and highly available Kubernetes cluster across a single [compute zone](https://cloud.google.com/compute/docs/regions-zones/regions-zones).
Kubernetes requires a set of machines to host the Kubernetes control plane and the worker nodes where containers are ultimately run. In this lab you will provision the machines required for setting up a Kubernetes cluster.
> Ensure a default compute zone and region have been set as described in the [Prerequisites](01-prerequisites.md#set-a-default-compute-region-and-zone) lab.
## Machine Database
## Networking
This tutorial will leverage a text file, which will serve as a machine database, to store the various machine attributes that will be used when setting up the Kubernetes control plane and worker nodes. The following schema represents entries in the machine database, one entry per line:
The Kubernetes [networking model](https://kubernetes.io/docs/concepts/cluster-administration/networking/#kubernetes-model) assumes a flat network in which containers and nodes can communicate with each other. In cases where this is not desired [network policies](https://kubernetes.io/docs/concepts/services-networking/network-policies/) can limit how groups of containers are allowed to communicate with each other and external network endpoints.
> Setting up network policies is out of scope for this tutorial.
### Virtual Private Cloud Network
In this section a dedicated [Virtual Private Cloud](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) (VPC) network will be setup to host the Kubernetes cluster.
Create the `kubernetes-the-hard-way` custom VPC network:
```
gcloud compute networks create kubernetes-the-hard-way --subnet-mode custom
```text
IPV4_ADDRESS FQDN HOSTNAME POD_SUBNET
```
A [subnet](https://cloud.google.com/compute/docs/vpc/#vpc_networks_and_subnets) must be provisioned with an IP address range large enough to assign a private IP address to each node in the Kubernetes cluster.
Each of the columns corresponds to a machine IP address `IPV4_ADDRESS`, fully qualified domain name `FQDN`, host name `HOSTNAME`, and the IP subnet `POD_SUBNET`. Kubernetes assigns one IP address per `pod` and the `POD_SUBNET` represents the unique IP address range assigned to each machine in the cluster for doing so.
Create the `kubernetes` subnet in the `kubernetes-the-hard-way` VPC network:
Here is an example machine database similar to the one used when creating this tutorial. Notice the IP addresses have been masked out. Your machines can be assigned any IP address as long as each machine is reachable from each other and the `jumpbox`.
```
gcloud compute networks subnets create kubernetes \
--network kubernetes-the-hard-way \
--range 10.240.0.0/24
```bash
cat machines.txt
```
> The `10.240.0.0/24` IP address range can host up to 254 compute instances.
### Firewall Rules
Create a firewall rule that allows internal communication across all protocols:
```
gcloud compute firewall-rules create kubernetes-the-hard-way-allow-internal \
--allow tcp,udp,icmp \
--network kubernetes-the-hard-way \
--source-ranges 10.240.0.0/24,10.200.0.0/16
```text
XXX.XXX.XXX.XXX server.kubernetes.local server
XXX.XXX.XXX.XXX node-0.kubernetes.local node-0 10.200.0.0/24
XXX.XXX.XXX.XXX node-1.kubernetes.local node-1 10.200.1.0/24
```
Create a firewall rule that allows external SSH, ICMP, and HTTPS:
```
gcloud compute firewall-rules create kubernetes-the-hard-way-allow-external \
--allow tcp:22,tcp:6443,icmp \
--network kubernetes-the-hard-way \
--source-ranges 0.0.0.0/0
```
> An [external load balancer](https://cloud.google.com/compute/docs/load-balancing/network/) will be used to expose the Kubernetes API Servers to remote clients.
List the firewall rules in the `kubernetes-the-hard-way` VPC network:
```
gcloud compute firewall-rules list --filter="network:kubernetes-the-hard-way"
```
> output
```
NAME NETWORK DIRECTION PRIORITY ALLOW DENY
kubernetes-the-hard-way-allow-external kubernetes-the-hard-way INGRESS 1000 tcp:22,tcp:6443,icmp
kubernetes-the-hard-way-allow-internal kubernetes-the-hard-way INGRESS 1000 tcp,udp,icmp
```
### Kubernetes Public IP Address
Allocate a static IP address that will be attached to the external load balancer fronting the Kubernetes API Servers:
```
gcloud compute addresses create kubernetes-the-hard-way \
--region $(gcloud config get-value compute/region)
```
Verify the `kubernetes-the-hard-way` static IP address was created in your default compute region:
```
gcloud compute addresses list --filter="name=('kubernetes-the-hard-way')"
```
> output
```
NAME REGION ADDRESS STATUS
kubernetes-the-hard-way us-west1 XX.XXX.XXX.XX RESERVED
```
## Compute Instances
The compute instances in this lab will be provisioned using [Ubuntu Server](https://www.ubuntu.com/server) 18.04, which has good support for the [containerd container runtime](https://github.com/containerd/containerd). Each compute instance will be provisioned with a fixed private IP address to simplify the Kubernetes bootstrapping process.
### Kubernetes Controllers
Create three compute instances which will host the Kubernetes control plane:
```
for i in 0 1 2; do
gcloud compute instances create controller-${i} \
--async \
--boot-disk-size 200GB \
--can-ip-forward \
--image-family ubuntu-1804-lts \
--image-project ubuntu-os-cloud \
--machine-type n1-standard-1 \
--private-network-ip 10.240.0.1${i} \
--scopes compute-rw,storage-ro,service-management,service-control,logging-write,monitoring \
--subnet kubernetes \
--tags kubernetes-the-hard-way,controller
done
```
### Kubernetes Workers
Each worker instance requires a pod subnet allocation from the Kubernetes cluster CIDR range. The pod subnet allocation will be used to configure container networking in a later exercise. The `pod-cidr` instance metadata will be used to expose pod subnet allocations to compute instances at runtime.
> The Kubernetes cluster CIDR range is defined by the Controller Manager's `--cluster-cidr` flag. In this tutorial the cluster CIDR range will be set to `10.200.0.0/16`, which supports 254 subnets.
Create three compute instances which will host the Kubernetes worker nodes:
```
for i in 0 1 2; do
gcloud compute instances create worker-${i} \
--async \
--boot-disk-size 200GB \
--can-ip-forward \
--image-family ubuntu-1804-lts \
--image-project ubuntu-os-cloud \
--machine-type n1-standard-1 \
--metadata pod-cidr=10.200.${i}.0/24 \
--private-network-ip 10.240.0.2${i} \
--scopes compute-rw,storage-ro,service-management,service-control,logging-write,monitoring \
--subnet kubernetes \
--tags kubernetes-the-hard-way,worker
done
```
### Verification
List the compute instances in your default compute zone:
```
gcloud compute instances list
```
> output
```
NAME ZONE MACHINE_TYPE PREEMPTIBLE INTERNAL_IP EXTERNAL_IP STATUS
controller-0 us-west1-c n1-standard-1 10.240.0.10 XX.XXX.XXX.XXX RUNNING
controller-1 us-west1-c n1-standard-1 10.240.0.11 XX.XXX.X.XX RUNNING
controller-2 us-west1-c n1-standard-1 10.240.0.12 XX.XXX.XXX.XX RUNNING
worker-0 us-west1-c n1-standard-1 10.240.0.20 XXX.XXX.XXX.XX RUNNING
worker-1 us-west1-c n1-standard-1 10.240.0.21 XX.XXX.XX.XXX RUNNING
worker-2 us-west1-c n1-standard-1 10.240.0.22 XXX.XXX.XX.XX RUNNING
```
Now it's your turn to create a `machines.txt` file with the details for the three machines you will be using to create your Kubernetes cluster. Use the example machine database from above and add the details for your machines.
## Configuring SSH Access
SSH will be used to configure the controller and worker instances. When connecting to compute instances for the first time SSH keys will be generated for you and stored in the project or instance metadata as describe in the [connecting to instances](https://cloud.google.com/compute/docs/instances/connecting-to-instance) documentation.
SSH will be used to configure the machines in the cluster. Verify that you have `root` SSH access to each machine listed in your machine database. You may need to enable root SSH access on each node by updating the sshd_config file and restarting the SSH server.
Test SSH access to the `controller-0` compute instances:
### Enable root SSH Access
```
gcloud compute ssh controller-0
If `root` SSH access is enabled for each of your machines you can skip this section.
By default, a new `debian` install disables SSH access for the `root` user. This is done for security reasons as the `root` user has total administrative control of unix-like systems. If a weak password is used on a machine connected to the internet, well, let's just say it's only a matter of time before your machine belongs to someone else. As mentioned earlier, we are going to enable `root` access over SSH in order to streamline the steps in this tutorial. Security is a tradeoff, and in this case, we are optimizing for convenience. Log on to each machine via SSH using your user account, then switch to the `root` user using the `su` command:
```bash
su - root
```
If this is your first time connecting to a compute instance SSH keys will be generated for you. Enter a passphrase at the prompt to continue:
Edit the `/etc/ssh/sshd_config` SSH daemon configuration file and set the `PermitRootLogin` option to `yes`:
```bash
sed -i \
's/^#*PermitRootLogin.*/PermitRootLogin yes/' \
/etc/ssh/sshd_config
```
WARNING: The public SSH key file for gcloud does not exist.
WARNING: The private SSH key file for gcloud does not exist.
WARNING: You do not have an SSH key for gcloud.
WARNING: SSH keygen will be executed to generate a key.
Restart the `sshd` SSH server to pick up the updated configuration file:
```bash
systemctl restart sshd
```
### Generate and Distribute SSH Keys
In this section you will generate and distribute an SSH keypair to the `server`, `node-0`, and `node-1`, machines, which will be used to run commands on those machines throughout this tutorial. Run the following commands from the `jumpbox` machine.
Generate a new SSH key:
```bash
ssh-keygen
```
```text
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_rsa
Your public key has been saved in /root/.ssh/id_rsa.pub
```
At this point the generated SSH keys will be uploaded and stored in your project:
Copy the SSH public key to each machine:
```
Your identification has been saved in /home/$USER/.ssh/google_compute_engine.
Your public key has been saved in /home/$USER/.ssh/google_compute_engine.pub.
The key fingerprint is:
SHA256:nz1i8jHmgQuGt+WscqP5SeIaSy5wyIJeL71MuV+QruE $USER@$HOSTNAME
The key's randomart image is:
+---[RSA 2048]----+
| |
| |
| |
| . |
|o. oS |
|=... .o .o o |
|+.+ =+=.+.X o |
|.+ ==O*B.B = . |
| .+.=EB++ o |
+----[SHA256]-----+
Updating project ssh metadata...-Updated [https://www.googleapis.com/compute/v1/projects/$PROJECT_ID].
Updating project ssh metadata...done.
Waiting for SSH key to propagate.
```bash
while read IP FQDN HOST SUBNET; do
ssh-copy-id root@${IP}
done < machines.txt
```
After the SSH keys have been updated you'll be logged into the `controller-0` instance:
Once each key is added, verify SSH public key access is working:
```
Welcome to Ubuntu 18.04 LTS (GNU/Linux 4.15.0-1006-gcp x86_64)
...
Last login: Sun May 13 14:34:27 2018 from XX.XXX.XXX.XX
```bash
while read IP FQDN HOST SUBNET; do
ssh -n root@${IP} hostname
done < machines.txt
```
Type `exit` at the prompt to exit the `controller-0` compute instance:
```text
server
node-0
node-1
```
```
$USER@controller-0:~$ exit
```
> output
## Hostnames
In this section you will assign hostnames to the `server`, `node-0`, and `node-1` machines. The hostname will be used when executing commands from the `jumpbox` to each machine. The hostname also plays a major role within the cluster. Instead of Kubernetes clients using an IP address to issue commands to the Kubernetes API server, those clients will use the `server` hostname instead. Hostnames are also used by each worker machine, `node-0` and `node-1` when registering with a given Kubernetes cluster.
To configure the hostname for each machine, run the following commands on the `jumpbox`.
Set the hostname on each machine listed in the `machines.txt` file:
```bash
while read IP FQDN HOST SUBNET; do
CMD="sed -i 's/^127.0.1.1.*/127.0.1.1\t${FQDN} ${HOST}/' /etc/hosts"
ssh -n root@${IP} "$CMD"
ssh -n root@${IP} hostnamectl set-hostname ${HOST}
ssh -n root@${IP} systemctl restart systemd-hostnamed
done < machines.txt
```
logout
Connection to XX.XXX.XXX.XXX closed
Verify the hostname is set on each machine:
```bash
while read IP FQDN HOST SUBNET; do
ssh -n root@${IP} hostname --fqdn
done < machines.txt
```
```text
server.kubernetes.local
node-0.kubernetes.local
node-1.kubernetes.local
```
## Host Lookup Table
In this section you will generate a `hosts` file which will be appended to `/etc/hosts` file on the `jumpbox` and to the `/etc/hosts` files on all three cluster members used for this tutorial. This will allow each machine to be reachable using a hostname such as `server`, `node-0`, or `node-1`.
Create a new `hosts` file and add a header to identify the machines being added:
```bash
echo "" > hosts
echo "# Kubernetes The Hard Way" >> hosts
```
Generate a host entry for each machine in the `machines.txt` file and append it to the `hosts` file:
```bash
while read IP FQDN HOST SUBNET; do
ENTRY="${IP} ${FQDN} ${HOST}"
echo $ENTRY >> hosts
done < machines.txt
```
Review the host entries in the `hosts` file:
```bash
cat hosts
```
```text
# Kubernetes The Hard Way
XXX.XXX.XXX.XXX server.kubernetes.local server
XXX.XXX.XXX.XXX node-0.kubernetes.local node-0
XXX.XXX.XXX.XXX node-1.kubernetes.local node-1
```
## Adding `/etc/hosts` Entries To A Local Machine
In this section you will append the DNS entries from the `hosts` file to the local `/etc/hosts` file on your `jumpbox` machine.
Append the DNS entries from `hosts` to `/etc/hosts`:
```bash
cat hosts >> /etc/hosts
```
Verify that the `/etc/hosts` file has been updated:
```bash
cat /etc/hosts
```
```text
127.0.0.1 localhost
127.0.1.1 jumpbox
# The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
# Kubernetes The Hard Way
XXX.XXX.XXX.XXX server.kubernetes.local server
XXX.XXX.XXX.XXX node-0.kubernetes.local node-0
XXX.XXX.XXX.XXX node-1.kubernetes.local node-1
```
At this point you should be able to SSH to each machine listed in the `machines.txt` file using a hostname.
```bash
for host in server node-0 node-1
do ssh root@${host} hostname
done
```
```text
server
node-0
node-1
```
## Adding `/etc/hosts` Entries To The Remote Machines
In this section you will append the host entries from `hosts` to `/etc/hosts` on each machine listed in the `machines.txt` text file.
Copy the `hosts` file to each machine and append the contents to `/etc/hosts`:
```bash
while read IP FQDN HOST SUBNET; do
scp hosts root@${HOST}:~/
ssh -n \
root@${HOST} "cat hosts >> /etc/hosts"
done < machines.txt
```
At this point, hostnames can be used when connecting to machines from your `jumpbox` machine, or any of the three machines in the Kubernetes cluster. Instead of using IP addresses you can now connect to machines using a hostname such as `server`, `node-0`, or `node-1`.
Next: [Provisioning a CA and Generating TLS Certificates](04-certificate-authority.md)

View File

@@ -1,408 +1,106 @@
# Provisioning a CA and Generating TLS Certificates
In this lab you will provision a [PKI Infrastructure](https://en.wikipedia.org/wiki/Public_key_infrastructure) using CloudFlare's PKI toolkit, [cfssl](https://github.com/cloudflare/cfssl), then use it to bootstrap a Certificate Authority, and generate TLS certificates for the following components: etcd, kube-apiserver, kube-controller-manager, kube-scheduler, kubelet, and kube-proxy.
In this lab you will provision a [PKI Infrastructure](https://en.wikipedia.org/wiki/Public_key_infrastructure) using openssl to bootstrap a Certificate Authority, and generate TLS certificates for the following components: kube-apiserver, kube-controller-manager, kube-scheduler, kubelet, and kube-proxy. The commands in this section should be run from the `jumpbox`.
## Certificate Authority
In this section you will provision a Certificate Authority that can be used to generate additional TLS certificates.
In this section you will provision a Certificate Authority that can be used to generate additional TLS certificates for the other Kubernetes components. Setting up CA and generating certificates using `openssl` can be time-consuming, especially when doing it for the first time. To streamline this lab, I've included an openssl configuration file `ca.conf`, which defines all the details needed to generate certificates for each Kubernetes component.
Take a moment to review the `ca.conf` configuration file:
```bash
cat ca.conf
```
You don't need to understand everything in the `ca.conf` file to complete this tutorial, but you should consider it a starting point for learning `openssl` and the configuration that goes into managing certificates at a high level.
Every certificate authority starts with a private key and root certificate. In this section we are going to create a self-signed certificate authority, and while that's all we need for this tutorial, this shouldn't be considered something you would do in a real-world production environment.
Generate the CA configuration file, certificate, and private key:
```
```bash
{
cat > ca-config.json <<EOF
{
"signing": {
"default": {
"expiry": "8760h"
},
"profiles": {
"kubernetes": {
"usages": ["signing", "key encipherment", "server auth", "client auth"],
"expiry": "8760h"
}
}
}
}
EOF
cat > ca-csr.json <<EOF
{
"CN": "Kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "US",
"L": "Portland",
"O": "Kubernetes",
"OU": "CA",
"ST": "Oregon"
}
]
}
EOF
cfssl gencert -initca ca-csr.json | cfssljson -bare ca
openssl genrsa -out ca.key 4096
openssl req -x509 -new -sha512 -noenc \
-key ca.key -days 3653 \
-config ca.conf \
-out ca.crt
}
```
Results:
```
ca-key.pem
ca.pem
```txt
ca.crt ca.key
```
## Client and Server Certificates
## Create Client and Server Certificates
In this section you will generate client and server certificates for each Kubernetes component and a client certificate for the Kubernetes `admin` user.
### The Admin Client Certificate
Generate the certificates and private keys:
Generate the `admin` client certificate and private key:
```
{
cat > admin-csr.json <<EOF
{
"CN": "admin",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "US",
"L": "Portland",
"O": "system:masters",
"OU": "Kubernetes The Hard Way",
"ST": "Oregon"
}
]
}
EOF
cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
admin-csr.json | cfssljson -bare admin
}
```bash
certs=(
"admin" "node-0" "node-1"
"kube-proxy" "kube-scheduler"
"kube-controller-manager"
"kube-api-server"
"service-accounts"
)
```
Results:
```bash
for i in ${certs[*]}; do
openssl genrsa -out "${i}.key" 4096
```
admin-key.pem
admin.pem
```
openssl req -new -key "${i}.key" -sha256 \
-config "ca.conf" -section ${i} \
-out "${i}.csr"
### The Kubelet Client Certificates
Kubernetes uses a [special-purpose authorization mode](https://kubernetes.io/docs/admin/authorization/node/) called Node Authorizer, that specifically authorizes API requests made by [Kubelets](https://kubernetes.io/docs/concepts/overview/components/#kubelet). In order to be authorized by the Node Authorizer, Kubelets must use a credential that identifies them as being in the `system:nodes` group, with a username of `system:node:<nodeName>`. In this section you will create a certificate for each Kubernetes worker node that meets the Node Authorizer requirements.
Generate a certificate and private key for each Kubernetes worker node:
```
for instance in worker-0 worker-1 worker-2; do
cat > ${instance}-csr.json <<EOF
{
"CN": "system:node:${instance}",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "US",
"L": "Portland",
"O": "system:nodes",
"OU": "Kubernetes The Hard Way",
"ST": "Oregon"
}
]
}
EOF
EXTERNAL_IP=$(gcloud compute instances describe ${instance} \
--format 'value(networkInterfaces[0].accessConfigs[0].natIP)')
INTERNAL_IP=$(gcloud compute instances describe ${instance} \
--format 'value(networkInterfaces[0].networkIP)')
cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-hostname=${instance},${EXTERNAL_IP},${INTERNAL_IP} \
-profile=kubernetes \
${instance}-csr.json | cfssljson -bare ${instance}
openssl x509 -req -days 3653 -in "${i}.csr" \
-copy_extensions copyall \
-sha256 -CA "ca.crt" \
-CAkey "ca.key" \
-CAcreateserial \
-out "${i}.crt"
done
```
Results:
The results of running the above command will generate a private key, certificate request, and signed SSL certificate for each of the Kubernetes components. You can list the generated files with the following command:
```bash
ls -1 *.crt *.key *.csr
```
worker-0-key.pem
worker-0.pem
worker-1-key.pem
worker-1.pem
worker-2-key.pem
worker-2.pem
```
### The Controller Manager Client Certificate
Generate the `kube-controller-manager` client certificate and private key:
```
{
cat > kube-controller-manager-csr.json <<EOF
{
"CN": "system:kube-controller-manager",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "US",
"L": "Portland",
"O": "system:kube-controller-manager",
"OU": "Kubernetes The Hard Way",
"ST": "Oregon"
}
]
}
EOF
cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
kube-controller-manager-csr.json | cfssljson -bare kube-controller-manager
}
```
Results:
```
kube-controller-manager-key.pem
kube-controller-manager.pem
```
### The Kube Proxy Client Certificate
Generate the `kube-proxy` client certificate and private key:
```
{
cat > kube-proxy-csr.json <<EOF
{
"CN": "system:kube-proxy",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "US",
"L": "Portland",
"O": "system:node-proxier",
"OU": "Kubernetes The Hard Way",
"ST": "Oregon"
}
]
}
EOF
cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
kube-proxy-csr.json | cfssljson -bare kube-proxy
}
```
Results:
```
kube-proxy-key.pem
kube-proxy.pem
```
### The Scheduler Client Certificate
Generate the `kube-scheduler` client certificate and private key:
```
{
cat > kube-scheduler-csr.json <<EOF
{
"CN": "system:kube-scheduler",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "US",
"L": "Portland",
"O": "system:kube-scheduler",
"OU": "Kubernetes The Hard Way",
"ST": "Oregon"
}
]
}
EOF
cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
kube-scheduler-csr.json | cfssljson -bare kube-scheduler
}
```
Results:
```
kube-scheduler-key.pem
kube-scheduler.pem
```
### The Kubernetes API Server Certificate
The `kubernetes-the-hard-way` static IP address will be included in the list of subject alternative names for the Kubernetes API Server certificate. This will ensure the certificate can be validated by remote clients.
Generate the Kubernetes API Server certificate and private key:
```
{
KUBERNETES_PUBLIC_ADDRESS=$(gcloud compute addresses describe kubernetes-the-hard-way \
--region $(gcloud config get-value compute/region) \
--format 'value(address)')
cat > kubernetes-csr.json <<EOF
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "US",
"L": "Portland",
"O": "Kubernetes",
"OU": "Kubernetes The Hard Way",
"ST": "Oregon"
}
]
}
EOF
cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-hostname=10.32.0.1,10.240.0.10,10.240.0.11,10.240.0.12,${KUBERNETES_PUBLIC_ADDRESS},127.0.0.1,kubernetes.default \
-profile=kubernetes \
kubernetes-csr.json | cfssljson -bare kubernetes
}
```
Results:
```
kubernetes-key.pem
kubernetes.pem
```
## The Service Account Key Pair
The Kubernetes Controller Manager leverages a key pair to generate and sign service account tokens as describe in the [managing service accounts](https://kubernetes.io/docs/admin/service-accounts-admin/) documentation.
Generate the `service-account` certificate and private key:
```
{
cat > service-account-csr.json <<EOF
{
"CN": "service-accounts",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "US",
"L": "Portland",
"O": "Kubernetes",
"OU": "Kubernetes The Hard Way",
"ST": "Oregon"
}
]
}
EOF
cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=ca-config.json \
-profile=kubernetes \
service-account-csr.json | cfssljson -bare service-account
}
```
Results:
```
service-account-key.pem
service-account.pem
```
## Distribute the Client and Server Certificates
Copy the appropriate certificates and private keys to each worker instance:
In this section you will copy the various certificates to every machine at a path where each Kubernetes component will search for its certificate pair. In a real-world environment these certificates should be treated like a set of sensitive secrets as they are used as credentials by the Kubernetes components to authenticate to each other.
```
for instance in worker-0 worker-1 worker-2; do
gcloud compute scp ca.pem ${instance}-key.pem ${instance}.pem ${instance}:~/
Copy the appropriate certificates and private keys to the `node-0` and `node-1` machines:
```bash
for host in node-0 node-1; do
ssh root@${host} mkdir /var/lib/kubelet/
scp ca.crt root@${host}:/var/lib/kubelet/
scp ${host}.crt \
root@${host}:/var/lib/kubelet/kubelet.crt
scp ${host}.key \
root@${host}:/var/lib/kubelet/kubelet.key
done
```
Copy the appropriate certificates and private keys to each controller instance:
Copy the appropriate certificates and private keys to the `server` machine:
```
for instance in controller-0 controller-1 controller-2; do
gcloud compute scp ca.pem ca-key.pem kubernetes-key.pem kubernetes.pem \
service-account-key.pem service-account.pem ${instance}:~/
done
```bash
scp \
ca.key ca.crt \
kube-api-server.key kube-api-server.crt \
service-accounts.key service-accounts.crt \
root@server:~/
```
> The `kube-proxy`, `kube-controller-manager`, `kube-scheduler`, and `kubelet` client certificates will be used to generate client authentication configuration files in the next lab.

View File

@@ -1,75 +1,65 @@
# Generating Kubernetes Configuration Files for Authentication
In this lab you will generate [Kubernetes configuration files](https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/), also known as kubeconfigs, which enable Kubernetes clients to locate and authenticate to the Kubernetes API Servers.
In this lab you will generate [Kubernetes client configuration files](https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/), typically called kubeconfigs, which configure Kubernetes clients to connect and authenticate to Kubernetes API Servers.
## Client Authentication Configs
In this section you will generate kubeconfig files for the `controller manager`, `kubelet`, `kube-proxy`, and `scheduler` clients and the `admin` user.
### Kubernetes Public IP Address
Each kubeconfig requires a Kubernetes API Server to connect to. To support high availability the IP address assigned to the external load balancer fronting the Kubernetes API Servers will be used.
Retrieve the `kubernetes-the-hard-way` static IP address:
```
KUBERNETES_PUBLIC_ADDRESS=$(gcloud compute addresses describe kubernetes-the-hard-way \
--region $(gcloud config get-value compute/region) \
--format 'value(address)')
```
In this section you will generate kubeconfig files for the `kubelet` and the `admin` user.
### The kubelet Kubernetes Configuration File
When generating kubeconfig files for Kubelets the client certificate matching the Kubelet's node name must be used. This will ensure Kubelets are properly authorized by the Kubernetes [Node Authorizer](https://kubernetes.io/docs/admin/authorization/node/).
When generating kubeconfig files for Kubelets the client certificate matching the Kubelet's node name must be used. This will ensure Kubelets are properly authorized by the Kubernetes [Node Authorizer](https://kubernetes.io/docs/reference/access-authn-authz/node/).
Generate a kubeconfig file for each worker node:
> The following commands must be run in the same directory used to generate the SSL certificates during the [Generating TLS Certificates](04-certificate-authority.md) lab.
```
for instance in worker-0 worker-1 worker-2; do
Generate a kubeconfig file for the `node-0` and `node-1` worker nodes:
```bash
for host in node-0 node-1; do
kubectl config set-cluster kubernetes-the-hard-way \
--certificate-authority=ca.pem \
--certificate-authority=ca.crt \
--embed-certs=true \
--server=https://${KUBERNETES_PUBLIC_ADDRESS}:6443 \
--kubeconfig=${instance}.kubeconfig
--server=https://server.kubernetes.local:6443 \
--kubeconfig=${host}.kubeconfig
kubectl config set-credentials system:node:${instance} \
--client-certificate=${instance}.pem \
--client-key=${instance}-key.pem \
kubectl config set-credentials system:node:${host} \
--client-certificate=${host}.crt \
--client-key=${host}.key \
--embed-certs=true \
--kubeconfig=${instance}.kubeconfig
--kubeconfig=${host}.kubeconfig
kubectl config set-context default \
--cluster=kubernetes-the-hard-way \
--user=system:node:${instance} \
--kubeconfig=${instance}.kubeconfig
--user=system:node:${host} \
--kubeconfig=${host}.kubeconfig
kubectl config use-context default --kubeconfig=${instance}.kubeconfig
kubectl config use-context default \
--kubeconfig=${host}.kubeconfig
done
```
Results:
```
worker-0.kubeconfig
worker-1.kubeconfig
worker-2.kubeconfig
```text
node-0.kubeconfig
node-1.kubeconfig
```
### The kube-proxy Kubernetes Configuration File
Generate a kubeconfig file for the `kube-proxy` service:
```
```bash
{
kubectl config set-cluster kubernetes-the-hard-way \
--certificate-authority=ca.pem \
--certificate-authority=ca.crt \
--embed-certs=true \
--server=https://${KUBERNETES_PUBLIC_ADDRESS}:6443 \
--server=https://server.kubernetes.local:6443 \
--kubeconfig=kube-proxy.kubeconfig
kubectl config set-credentials system:kube-proxy \
--client-certificate=kube-proxy.pem \
--client-key=kube-proxy-key.pem \
--client-certificate=kube-proxy.crt \
--client-key=kube-proxy.key \
--embed-certs=true \
--kubeconfig=kube-proxy.kubeconfig
@@ -78,13 +68,14 @@ Generate a kubeconfig file for the `kube-proxy` service:
--user=system:kube-proxy \
--kubeconfig=kube-proxy.kubeconfig
kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
kubectl config use-context default \
--kubeconfig=kube-proxy.kubeconfig
}
```
Results:
```
```text
kube-proxy.kubeconfig
```
@@ -92,17 +83,17 @@ kube-proxy.kubeconfig
Generate a kubeconfig file for the `kube-controller-manager` service:
```
```bash
{
kubectl config set-cluster kubernetes-the-hard-way \
--certificate-authority=ca.pem \
--certificate-authority=ca.crt \
--embed-certs=true \
--server=https://127.0.0.1:6443 \
--server=https://server.kubernetes.local:6443 \
--kubeconfig=kube-controller-manager.kubeconfig
kubectl config set-credentials system:kube-controller-manager \
--client-certificate=kube-controller-manager.pem \
--client-key=kube-controller-manager-key.pem \
--client-certificate=kube-controller-manager.crt \
--client-key=kube-controller-manager.key \
--embed-certs=true \
--kubeconfig=kube-controller-manager.kubeconfig
@@ -111,13 +102,14 @@ Generate a kubeconfig file for the `kube-controller-manager` service:
--user=system:kube-controller-manager \
--kubeconfig=kube-controller-manager.kubeconfig
kubectl config use-context default --kubeconfig=kube-controller-manager.kubeconfig
kubectl config use-context default \
--kubeconfig=kube-controller-manager.kubeconfig
}
```
Results:
```
```text
kube-controller-manager.kubeconfig
```
@@ -126,17 +118,17 @@ kube-controller-manager.kubeconfig
Generate a kubeconfig file for the `kube-scheduler` service:
```
```bash
{
kubectl config set-cluster kubernetes-the-hard-way \
--certificate-authority=ca.pem \
--certificate-authority=ca.crt \
--embed-certs=true \
--server=https://127.0.0.1:6443 \
--server=https://server.kubernetes.local:6443 \
--kubeconfig=kube-scheduler.kubeconfig
kubectl config set-credentials system:kube-scheduler \
--client-certificate=kube-scheduler.pem \
--client-key=kube-scheduler-key.pem \
--client-certificate=kube-scheduler.crt \
--client-key=kube-scheduler.key \
--embed-certs=true \
--kubeconfig=kube-scheduler.kubeconfig
@@ -145,13 +137,14 @@ Generate a kubeconfig file for the `kube-scheduler` service:
--user=system:kube-scheduler \
--kubeconfig=kube-scheduler.kubeconfig
kubectl config use-context default --kubeconfig=kube-scheduler.kubeconfig
kubectl config use-context default \
--kubeconfig=kube-scheduler.kubeconfig
}
```
Results:
```
```text
kube-scheduler.kubeconfig
```
@@ -159,17 +152,17 @@ kube-scheduler.kubeconfig
Generate a kubeconfig file for the `admin` user:
```
```bash
{
kubectl config set-cluster kubernetes-the-hard-way \
--certificate-authority=ca.pem \
--certificate-authority=ca.crt \
--embed-certs=true \
--server=https://127.0.0.1:6443 \
--kubeconfig=admin.kubeconfig
kubectl config set-credentials admin \
--client-certificate=admin.pem \
--client-key=admin-key.pem \
--client-certificate=admin.crt \
--client-key=admin.key \
--embed-certs=true \
--kubeconfig=admin.kubeconfig
@@ -178,35 +171,40 @@ Generate a kubeconfig file for the `admin` user:
--user=admin \
--kubeconfig=admin.kubeconfig
kubectl config use-context default --kubeconfig=admin.kubeconfig
kubectl config use-context default \
--kubeconfig=admin.kubeconfig
}
```
Results:
```
```text
admin.kubeconfig
```
##
## Distribute the Kubernetes Configuration Files
Copy the appropriate `kubelet` and `kube-proxy` kubeconfig files to each worker instance:
Copy the `kubelet` and `kube-proxy` kubeconfig files to the `node-0` and `node-1` machines:
```
for instance in worker-0 worker-1 worker-2; do
gcloud compute scp ${instance}.kubeconfig kube-proxy.kubeconfig ${instance}:~/
```bash
for host in node-0 node-1; do
ssh root@${host} "mkdir -p /var/lib/{kube-proxy,kubelet}"
scp kube-proxy.kubeconfig \
root@${host}:/var/lib/kube-proxy/kubeconfig \
scp ${host}.kubeconfig \
root@${host}:/var/lib/kubelet/kubeconfig
done
```
Copy the appropriate `kube-controller-manager` and `kube-scheduler` kubeconfig files to each controller instance:
Copy the `kube-controller-manager` and `kube-scheduler` kubeconfig files to the `server` machine:
```
for instance in controller-0 controller-1 controller-2; do
gcloud compute scp admin.kubeconfig kube-controller-manager.kubeconfig kube-scheduler.kubeconfig ${instance}:~/
done
```bash
scp admin.kubeconfig \
kube-controller-manager.kubeconfig \
kube-scheduler.kubeconfig \
root@server:~/
```
Next: [Generating the Data Encryption Config and Key](06-data-encryption-keys.md)

View File

@@ -8,36 +8,23 @@ In this lab you will generate an encryption key and an [encryption config](https
Generate an encryption key:
```
ENCRYPTION_KEY=$(head -c 32 /dev/urandom | base64)
```bash
export ENCRYPTION_KEY=$(head -c 32 /dev/urandom | base64)
```
## The Encryption Config File
Create the `encryption-config.yaml` encryption config file:
```
cat > encryption-config.yaml <<EOF
kind: EncryptionConfig
apiVersion: v1
resources:
- resources:
- secrets
providers:
- aescbc:
keys:
- name: key1
secret: ${ENCRYPTION_KEY}
- identity: {}
EOF
```bash
envsubst < configs/encryption-config.yaml \
> encryption-config.yaml
```
Copy the `encryption-config.yaml` encryption config file to each controller instance:
```
for instance in controller-0 controller-1 controller-2; do
gcloud compute scp encryption-config.yaml ${instance}:~/
done
```bash
scp encryption-config.yaml root@server:~/
```
Next: [Bootstrapping the etcd Cluster](07-bootstrapping-etcd.md)

View File

@@ -1,126 +1,76 @@
# Bootstrapping the etcd Cluster
Kubernetes components are stateless and store cluster state in [etcd](https://github.com/coreos/etcd). In this lab you will bootstrap a three node etcd cluster and configure it for high availability and secure remote access.
Kubernetes components are stateless and store cluster state in [etcd](https://github.com/etcd-io/etcd). In this lab you will bootstrap a single node etcd cluster.
## Prerequisites
The commands in this lab must be run on each controller instance: `controller-0`, `controller-1`, and `controller-2`. Login to each controller instance using the `gcloud` command. Example:
Copy `etcd` binaries and systemd unit files to the `server` machine:
```
gcloud compute ssh controller-0
```bash
scp \
downloads/controller/etcd \
downloads/client/etcdctl \
units/etcd.service \
root@server:~/
```
### Running commands in parallel with tmux
[tmux](https://github.com/tmux/tmux/wiki) can be used to run commands on multiple compute instances at the same time. See the [Running commands in parallel with tmux](01-prerequisites.md#running-commands-in-parallel-with-tmux) section in the Prerequisites lab.
## Bootstrapping an etcd Cluster Member
### Download and Install the etcd Binaries
Download the official etcd release binaries from the [coreos/etcd](https://github.com/coreos/etcd) GitHub project:
The commands in this lab must be run on the `server` machine. Login to the `server` machine using the `ssh` command. Example:
```bash
ssh root@server
```
wget -q --show-progress --https-only --timestamping \
"https://github.com/coreos/etcd/releases/download/v3.3.9/etcd-v3.3.9-linux-amd64.tar.gz"
```
## Bootstrapping an etcd Cluster
### Install the etcd Binaries
Extract and install the `etcd` server and the `etcdctl` command line utility:
```
```bash
{
tar -xvf etcd-v3.3.9-linux-amd64.tar.gz
sudo mv etcd-v3.3.9-linux-amd64/etcd* /usr/local/bin/
mv etcd etcdctl /usr/local/bin/
}
```
### Configure the etcd Server
```
```bash
{
sudo mkdir -p /etc/etcd /var/lib/etcd
sudo cp ca.pem kubernetes-key.pem kubernetes.pem /etc/etcd/
mkdir -p /etc/etcd /var/lib/etcd
chmod 700 /var/lib/etcd
cp ca.crt kube-api-server.key kube-api-server.crt \
/etc/etcd/
}
```
The instance internal IP address will be used to serve client requests and communicate with etcd cluster peers. Retrieve the internal IP address for the current compute instance:
```
INTERNAL_IP=$(curl -s -H "Metadata-Flavor: Google" \
http://metadata.google.internal/computeMetadata/v1/instance/network-interfaces/0/ip)
```
Each etcd member must have a unique name within an etcd cluster. Set the etcd name to match the hostname of the current compute instance:
```
ETCD_NAME=$(hostname -s)
```
Create the `etcd.service` systemd unit file:
```
cat <<EOF | sudo tee /etc/systemd/system/etcd.service
[Unit]
Description=etcd
Documentation=https://github.com/coreos
[Service]
ExecStart=/usr/local/bin/etcd \\
--name ${ETCD_NAME} \\
--cert-file=/etc/etcd/kubernetes.pem \\
--key-file=/etc/etcd/kubernetes-key.pem \\
--peer-cert-file=/etc/etcd/kubernetes.pem \\
--peer-key-file=/etc/etcd/kubernetes-key.pem \\
--trusted-ca-file=/etc/etcd/ca.pem \\
--peer-trusted-ca-file=/etc/etcd/ca.pem \\
--peer-client-cert-auth \\
--client-cert-auth \\
--initial-advertise-peer-urls https://${INTERNAL_IP}:2380 \\
--listen-peer-urls https://${INTERNAL_IP}:2380 \\
--listen-client-urls https://${INTERNAL_IP}:2379,https://127.0.0.1:2379 \\
--advertise-client-urls https://${INTERNAL_IP}:2379 \\
--initial-cluster-token etcd-cluster-0 \\
--initial-cluster controller-0=https://10.240.0.10:2380,controller-1=https://10.240.0.11:2380,controller-2=https://10.240.0.12:2380 \\
--initial-cluster-state new \\
--data-dir=/var/lib/etcd
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
EOF
```bash
mv etcd.service /etc/systemd/system/
```
### Start the etcd Server
```
```bash
{
sudo systemctl daemon-reload
sudo systemctl enable etcd
sudo systemctl start etcd
systemctl daemon-reload
systemctl enable etcd
systemctl start etcd
}
```
> Remember to run the above commands on each controller node: `controller-0`, `controller-1`, and `controller-2`.
## Verification
List the etcd cluster members:
```
sudo ETCDCTL_API=3 etcdctl member list \
--endpoints=https://127.0.0.1:2379 \
--cacert=/etc/etcd/ca.pem \
--cert=/etc/etcd/kubernetes.pem \
--key=/etc/etcd/kubernetes-key.pem
```bash
etcdctl member list
```
> output
```
3a57933972cb5131, started, controller-2, https://10.240.0.12:2380, https://10.240.0.12:2379
f98dc20bce6225a0, started, controller-0, https://10.240.0.10:2380, https://10.240.0.10:2379
ffed16798470cab5, started, controller-1, https://10.240.0.11:2380, https://10.240.0.11:2379
```text
6702b0a34e2cfd39, started, controller, http://127.0.0.1:2380, http://127.0.0.1:2379, false
```
Next: [Bootstrapping the Kubernetes Control Plane](08-bootstrapping-kubernetes-controllers.md)

View File

@@ -1,410 +1,195 @@
# Bootstrapping the Kubernetes Control Plane
In this lab you will bootstrap the Kubernetes control plane across three compute instances and configure it for high availability. You will also create an external load balancer that exposes the Kubernetes API Servers to remote clients. The following components will be installed on each node: Kubernetes API Server, Scheduler, and Controller Manager.
In this lab you will bootstrap the Kubernetes control plane. The following components will be installed on the `server` machine: Kubernetes API Server, Scheduler, and Controller Manager.
## Prerequisites
The commands in this lab must be run on each controller instance: `controller-0`, `controller-1`, and `controller-2`. Login to each controller instance using the `gcloud` command. Example:
Connect to the `jumpbox` and copy Kubernetes binaries and systemd unit files to the `server` machine:
```
gcloud compute ssh controller-0
```bash
scp \
downloads/controller/kube-apiserver \
downloads/controller/kube-controller-manager \
downloads/controller/kube-scheduler \
downloads/client/kubectl \
units/kube-apiserver.service \
units/kube-controller-manager.service \
units/kube-scheduler.service \
configs/kube-scheduler.yaml \
configs/kube-apiserver-to-kubelet.yaml \
root@server:~/
```
### Running commands in parallel with tmux
The commands in this lab must be run on the `server` machine. Login to the `server` machine using the `ssh` command. Example:
[tmux](https://github.com/tmux/tmux/wiki) can be used to run commands on multiple compute instances at the same time. See the [Running commands in parallel with tmux](01-prerequisites.md#running-commands-in-parallel-with-tmux) section in the Prerequisites lab.
```bash
ssh root@server
```
## Provision the Kubernetes Control Plane
Create the Kubernetes configuration directory:
```
sudo mkdir -p /etc/kubernetes/config
```bash
mkdir -p /etc/kubernetes/config
```
### Download and Install the Kubernetes Controller Binaries
Download the official Kubernetes release binaries:
```
wget -q --show-progress --https-only --timestamping \
"https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linux/amd64/kube-apiserver" \
"https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linux/amd64/kube-controller-manager" \
"https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linux/amd64/kube-scheduler" \
"https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linux/amd64/kubectl"
```
### Install the Kubernetes Controller Binaries
Install the Kubernetes binaries:
```
```bash
{
chmod +x kube-apiserver kube-controller-manager kube-scheduler kubectl
sudo mv kube-apiserver kube-controller-manager kube-scheduler kubectl /usr/local/bin/
mv kube-apiserver \
kube-controller-manager \
kube-scheduler kubectl \
/usr/local/bin/
}
```
### Configure the Kubernetes API Server
```
```bash
{
sudo mkdir -p /var/lib/kubernetes/
mkdir -p /var/lib/kubernetes/
sudo mv ca.pem ca-key.pem kubernetes-key.pem kubernetes.pem \
service-account-key.pem service-account.pem \
encryption-config.yaml /var/lib/kubernetes/
mv ca.crt ca.key \
kube-api-server.key kube-api-server.crt \
service-accounts.key service-accounts.crt \
encryption-config.yaml \
/var/lib/kubernetes/
}
```
The instance internal IP address will be used to advertise the API Server to members of the cluster. Retrieve the internal IP address for the current compute instance:
```
INTERNAL_IP=$(curl -s -H "Metadata-Flavor: Google" \
http://metadata.google.internal/computeMetadata/v1/instance/network-interfaces/0/ip)
```
Create the `kube-apiserver.service` systemd unit file:
```
cat <<EOF | sudo tee /etc/systemd/system/kube-apiserver.service
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
[Service]
ExecStart=/usr/local/bin/kube-apiserver \\
--advertise-address=${INTERNAL_IP} \\
--allow-privileged=true \\
--apiserver-count=3 \\
--audit-log-maxage=30 \\
--audit-log-maxbackup=3 \\
--audit-log-maxsize=100 \\
--audit-log-path=/var/log/audit.log \\
--authorization-mode=Node,RBAC \\
--bind-address=0.0.0.0 \\
--client-ca-file=/var/lib/kubernetes/ca.pem \\
--enable-admission-plugins=Initializers,NamespaceLifecycle,NodeRestriction,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota \\
--enable-swagger-ui=true \\
--etcd-cafile=/var/lib/kubernetes/ca.pem \\
--etcd-certfile=/var/lib/kubernetes/kubernetes.pem \\
--etcd-keyfile=/var/lib/kubernetes/kubernetes-key.pem \\
--etcd-servers=https://10.240.0.10:2379,https://10.240.0.11:2379,https://10.240.0.12:2379 \\
--event-ttl=1h \\
--experimental-encryption-provider-config=/var/lib/kubernetes/encryption-config.yaml \\
--kubelet-certificate-authority=/var/lib/kubernetes/ca.pem \\
--kubelet-client-certificate=/var/lib/kubernetes/kubernetes.pem \\
--kubelet-client-key=/var/lib/kubernetes/kubernetes-key.pem \\
--kubelet-https=true \\
--runtime-config=api/all \\
--service-account-key-file=/var/lib/kubernetes/service-account.pem \\
--service-cluster-ip-range=10.32.0.0/24 \\
--service-node-port-range=30000-32767 \\
--tls-cert-file=/var/lib/kubernetes/kubernetes.pem \\
--tls-private-key-file=/var/lib/kubernetes/kubernetes-key.pem \\
--v=2
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
EOF
```bash
mv kube-apiserver.service \
/etc/systemd/system/kube-apiserver.service
```
### Configure the Kubernetes Controller Manager
Move the `kube-controller-manager` kubeconfig into place:
```
sudo mv kube-controller-manager.kubeconfig /var/lib/kubernetes/
```bash
mv kube-controller-manager.kubeconfig /var/lib/kubernetes/
```
Create the `kube-controller-manager.service` systemd unit file:
```
cat <<EOF | sudo tee /etc/systemd/system/kube-controller-manager.service
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes
[Service]
ExecStart=/usr/local/bin/kube-controller-manager \\
--address=0.0.0.0 \\
--cluster-cidr=10.200.0.0/16 \\
--cluster-name=kubernetes \\
--cluster-signing-cert-file=/var/lib/kubernetes/ca.pem \\
--cluster-signing-key-file=/var/lib/kubernetes/ca-key.pem \\
--kubeconfig=/var/lib/kubernetes/kube-controller-manager.kubeconfig \\
--leader-elect=true \\
--root-ca-file=/var/lib/kubernetes/ca.pem \\
--service-account-private-key-file=/var/lib/kubernetes/service-account-key.pem \\
--service-cluster-ip-range=10.32.0.0/24 \\
--use-service-account-credentials=true \\
--v=2
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
EOF
```bash
mv kube-controller-manager.service /etc/systemd/system/
```
### Configure the Kubernetes Scheduler
Move the `kube-scheduler` kubeconfig into place:
```
sudo mv kube-scheduler.kubeconfig /var/lib/kubernetes/
```bash
mv kube-scheduler.kubeconfig /var/lib/kubernetes/
```
Create the `kube-scheduler.yaml` configuration file:
```
cat <<EOF | sudo tee /etc/kubernetes/config/kube-scheduler.yaml
apiVersion: componentconfig/v1alpha1
kind: KubeSchedulerConfiguration
clientConnection:
kubeconfig: "/var/lib/kubernetes/kube-scheduler.kubeconfig"
leaderElection:
leaderElect: true
EOF
```bash
mv kube-scheduler.yaml /etc/kubernetes/config/
```
Create the `kube-scheduler.service` systemd unit file:
```
cat <<EOF | sudo tee /etc/systemd/system/kube-scheduler.service
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes
[Service]
ExecStart=/usr/local/bin/kube-scheduler \\
--config=/etc/kubernetes/config/kube-scheduler.yaml \\
--v=2
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
EOF
```bash
mv kube-scheduler.service /etc/systemd/system/
```
### Start the Controller Services
```
```bash
{
sudo systemctl daemon-reload
sudo systemctl enable kube-apiserver kube-controller-manager kube-scheduler
sudo systemctl start kube-apiserver kube-controller-manager kube-scheduler
systemctl daemon-reload
systemctl enable kube-apiserver \
kube-controller-manager kube-scheduler
systemctl start kube-apiserver \
kube-controller-manager kube-scheduler
}
```
> Allow up to 10 seconds for the Kubernetes API Server to fully initialize.
### Enable HTTP Health Checks
You can check if any of the control plane components are active using the `systemctl` command. For example, to check if the `kube-apiserver` fully initialized, and active, run the following command:
A [Google Network Load Balancer](https://cloud.google.com/compute/docs/load-balancing/network) will be used to distribute traffic across the three API servers and allow each API server to terminate TLS connections and validate client certificates. The network load balancer only supports HTTP health checks which means the HTTPS endpoint exposed by the API server cannot be used. As a workaround the nginx webserver can be used to proxy HTTP health checks. In this section nginx will be installed and configured to accept HTTP health checks on port `80` and proxy the connections to the API server on `https://127.0.0.1:6443/healthz`.
> The `/healthz` API server endpoint does not require authentication by default.
Install a basic web server to handle HTTP health checks:
```
sudo apt-get install -y nginx
```bash
systemctl is-active kube-apiserver
```
```
cat > kubernetes.default.svc.cluster.local <<EOF
server {
listen 80;
server_name kubernetes.default.svc.cluster.local;
For a more detailed status check, which includes additional process information and log messages, use the `systemctl status` command:
location /healthz {
proxy_pass https://127.0.0.1:6443/healthz;
proxy_ssl_trusted_certificate /var/lib/kubernetes/ca.pem;
}
}
EOF
```bash
systemctl status kube-apiserver
```
```
{
sudo mv kubernetes.default.svc.cluster.local \
/etc/nginx/sites-available/kubernetes.default.svc.cluster.local
If you run into any errors, or want to view the logs for any of the control plane components, use the `journalctl` command. For example, to view the logs for the `kube-apiserver` run the following command:
sudo ln -s /etc/nginx/sites-available/kubernetes.default.svc.cluster.local /etc/nginx/sites-enabled/
}
```
```
sudo systemctl restart nginx
```
```
sudo systemctl enable nginx
```bash
journalctl -u kube-apiserver
```
### Verification
```
kubectl get componentstatuses --kubeconfig admin.kubeconfig
At this point the Kubernetes control plane components should be up and running. Verify this using the `kubectl` command line tool:
```bash
kubectl cluster-info \
--kubeconfig admin.kubeconfig
```
```text
Kubernetes control plane is running at https://127.0.0.1:6443
```
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-2 Healthy {"health": "true"}
etcd-0 Healthy {"health": "true"}
etcd-1 Healthy {"health": "true"}
```
Test the nginx HTTP health check proxy:
```
curl -H "Host: kubernetes.default.svc.cluster.local" -i http://127.0.0.1/healthz
```
```
HTTP/1.1 200 OK
Server: nginx/1.14.0 (Ubuntu)
Date: Sun, 30 Sep 2018 17:44:24 GMT
Content-Type: text/plain; charset=utf-8
Content-Length: 2
Connection: keep-alive
ok
```
> Remember to run the above commands on each controller node: `controller-0`, `controller-1`, and `controller-2`.
## RBAC for Kubelet Authorization
In this section you will configure RBAC permissions to allow the Kubernetes API Server to access the Kubelet API on each worker node. Access to the Kubelet API is required for retrieving metrics, logs, and executing commands in pods.
> This tutorial sets the Kubelet `--authorization-mode` flag to `Webhook`. Webhook mode uses the [SubjectAccessReview](https://kubernetes.io/docs/admin/authorization/#checking-api-access) API to determine authorization.
> This tutorial sets the Kubelet `--authorization-mode` flag to `Webhook`. Webhook mode uses the [SubjectAccessReview](https://kubernetes.io/docs/reference/access-authn-authz/authorization/#checking-api-access) API to determine authorization.
```
gcloud compute ssh controller-0
The commands in this section will affect the entire cluster and only need to be run on the `server` machine.
```bash
ssh root@server
```
Create the `system:kube-apiserver-to-kubelet` [ClusterRole](https://kubernetes.io/docs/admin/authorization/rbac/#role-and-clusterrole) with permissions to access the Kubelet API and perform most common tasks associated with managing pods:
Create the `system:kube-apiserver-to-kubelet` [ClusterRole](https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole) with permissions to access the Kubelet API and perform most common tasks associated with managing pods:
```
cat <<EOF | kubectl apply --kubeconfig admin.kubeconfig -f -
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: system:kube-apiserver-to-kubelet
rules:
- apiGroups:
- ""
resources:
- nodes/proxy
- nodes/stats
- nodes/log
- nodes/spec
- nodes/metrics
verbs:
- "*"
EOF
```
The Kubernetes API Server authenticates to the Kubelet as the `kubernetes` user using the client certificate as defined by the `--kubelet-client-certificate` flag.
Bind the `system:kube-apiserver-to-kubelet` ClusterRole to the `kubernetes` user:
```
cat <<EOF | kubectl apply --kubeconfig admin.kubeconfig -f -
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
name: system:kube-apiserver
namespace: ""
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:kube-apiserver-to-kubelet
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: kubernetes
EOF
```
## The Kubernetes Frontend Load Balancer
In this section you will provision an external load balancer to front the Kubernetes API Servers. The `kubernetes-the-hard-way` static IP address will be attached to the resulting load balancer.
> The compute instances created in this tutorial will not have permission to complete this section. Run the following commands from the same machine used to create the compute instances.
### Provision a Network Load Balancer
Create the external load balancer network resources:
```
{
KUBERNETES_PUBLIC_ADDRESS=$(gcloud compute addresses describe kubernetes-the-hard-way \
--region $(gcloud config get-value compute/region) \
--format 'value(address)')
gcloud compute http-health-checks create kubernetes \
--description "Kubernetes Health Check" \
--host "kubernetes.default.svc.cluster.local" \
--request-path "/healthz"
gcloud compute firewall-rules create kubernetes-the-hard-way-allow-health-check \
--network kubernetes-the-hard-way \
--source-ranges 209.85.152.0/22,209.85.204.0/22,35.191.0.0/16 \
--allow tcp
gcloud compute target-pools create kubernetes-target-pool \
--http-health-check kubernetes
gcloud compute target-pools add-instances kubernetes-target-pool \
--instances controller-0,controller-1,controller-2
gcloud compute forwarding-rules create kubernetes-forwarding-rule \
--address ${KUBERNETES_PUBLIC_ADDRESS} \
--ports 6443 \
--region $(gcloud config get-value compute/region) \
--target-pool kubernetes-target-pool
}
```bash
kubectl apply -f kube-apiserver-to-kubelet.yaml \
--kubeconfig admin.kubeconfig
```
### Verification
Retrieve the `kubernetes-the-hard-way` static IP address:
```
KUBERNETES_PUBLIC_ADDRESS=$(gcloud compute addresses describe kubernetes-the-hard-way \
--region $(gcloud config get-value compute/region) \
--format 'value(address)')
```
At this point the Kubernetes control plane is up and running. Run the following commands from the `jumpbox` machine to verify it's working:
Make a HTTP request for the Kubernetes version info:
```
curl --cacert ca.pem https://${KUBERNETES_PUBLIC_ADDRESS}:6443/version
```bash
curl --cacert ca.crt \
https://server.kubernetes.local:6443/version
```
> output
```
```text
{
"major": "1",
"minor": "12",
"gitVersion": "v1.12.0",
"gitCommit": "0ed33881dc4355495f623c6f22e7dd0b7632b7c0",
"minor": "32",
"gitVersion": "v1.32.3",
"gitCommit": "32cc146f75aad04beaaa245a7157eb35063a9f99",
"gitTreeState": "clean",
"buildDate": "2018-09-27T16:55:41Z",
"goVersion": "go1.10.4",
"buildDate": "2025-03-11T19:52:21Z",
"goVersion": "go1.23.6",
"compiler": "gc",
"platform": "linux/amd64"
"platform": "linux/arm64"
}
```

View File

@@ -1,50 +1,91 @@
# Bootstrapping the Kubernetes Worker Nodes
In this lab you will bootstrap three Kubernetes worker nodes. The following components will be installed on each node: [runc](https://github.com/opencontainers/runc), [gVisor](https://github.com/google/gvisor), [container networking plugins](https://github.com/containernetworking/cni), [containerd](https://github.com/containerd/containerd), [kubelet](https://kubernetes.io/docs/admin/kubelet), and [kube-proxy](https://kubernetes.io/docs/concepts/cluster-administration/proxies).
In this lab you will bootstrap two Kubernetes worker nodes. The following components will be installed: [runc](https://github.com/opencontainers/runc), [container networking plugins](https://github.com/containernetworking/cni), [containerd](https://github.com/containerd/containerd), [kubelet](https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet), and [kube-proxy](https://kubernetes.io/docs/concepts/cluster-administration/proxies).
## Prerequisites
The commands in this lab must be run on each worker instance: `worker-0`, `worker-1`, and `worker-2`. Login to each worker instance using the `gcloud` command. Example:
The commands in this section must be run from the `jumpbox`.
```
gcloud compute ssh worker-0
Copy the Kubernetes binaries and systemd unit files to each worker instance:
```bash
for HOST in node-0 node-1; do
SUBNET=$(grep ${HOST} machines.txt | cut -d " " -f 4)
sed "s|SUBNET|$SUBNET|g" \
configs/10-bridge.conf > 10-bridge.conf
sed "s|SUBNET|$SUBNET|g" \
configs/kubelet-config.yaml > kubelet-config.yaml
scp 10-bridge.conf kubelet-config.yaml \
root@${HOST}:~/
done
```
### Running commands in parallel with tmux
```bash
for HOST in node-0 node-1; do
scp \
downloads/worker/* \
downloads/client/kubectl \
configs/99-loopback.conf \
configs/containerd-config.toml \
configs/kube-proxy-config.yaml \
units/containerd.service \
units/kubelet.service \
units/kube-proxy.service \
root@${HOST}:~/
done
```
[tmux](https://github.com/tmux/tmux/wiki) can be used to run commands on multiple compute instances at the same time. See the [Running commands in parallel with tmux](01-prerequisites.md#running-commands-in-parallel-with-tmux) section in the Prerequisites lab.
```bash
for HOST in node-0 node-1; do
scp \
downloads/cni-plugins/* \
root@${HOST}:~/cni-plugins/
done
```
The commands in the next section must be run on each worker instance: `node-0`, `node-1`. Login to the worker instance using the `ssh` command. Example:
```bash
ssh root@node-0
```
## Provisioning a Kubernetes Worker Node
Install the OS dependencies:
```
```bash
{
sudo apt-get update
sudo apt-get -y install socat conntrack ipset
apt-get update
apt-get -y install socat conntrack ipset kmod
}
```
> The socat binary enables support for the `kubectl port-forward` command.
### Download and Install Worker Binaries
Disable Swap
Kubernetes has limited support for the use of swap memory, as it is difficult to provide guarantees and account for pod memory utilization when swap is involved.
Verify if swap is disabled:
```bash
swapon --show
```
wget -q --show-progress --https-only --timestamping \
https://github.com/kubernetes-sigs/cri-tools/releases/download/v1.12.0/crictl-v1.12.0-linux-amd64.tar.gz \
https://storage.googleapis.com/kubernetes-the-hard-way/runsc-50c283b9f56bb7200938d9e207355f05f79f0d17 \
https://github.com/opencontainers/runc/releases/download/v1.0.0-rc5/runc.amd64 \
https://github.com/containernetworking/plugins/releases/download/v0.6.0/cni-plugins-amd64-v0.6.0.tgz \
https://github.com/containerd/containerd/releases/download/v1.2.0-rc.0/containerd-1.2.0-rc.0.linux-amd64.tar.gz \
https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linux/amd64/kubectl \
https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linux/amd64/kube-proxy \
https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linux/amd64/kubelet
If output is empty then swap is disabled. If swap is enabled run the following command to disable swap immediately:
```bash
swapoff -a
```
> To ensure swap remains off after reboot consult your Linux distro documentation.
Create the installation directories:
```
sudo mkdir -p \
```bash
mkdir -p \
/etc/cni/net.d \
/opt/cni/bin \
/var/lib/kubelet \
@@ -55,250 +96,112 @@ sudo mkdir -p \
Install the worker binaries:
```
```bash
{
sudo mv runsc-50c283b9f56bb7200938d9e207355f05f79f0d17 runsc
sudo mv runc.amd64 runc
chmod +x kubectl kube-proxy kubelet runc runsc
sudo mv kubectl kube-proxy kubelet runc runsc /usr/local/bin/
sudo tar -xvf crictl-v1.12.0-linux-amd64.tar.gz -C /usr/local/bin/
sudo tar -xvf cni-plugins-amd64-v0.6.0.tgz -C /opt/cni/bin/
sudo tar -xvf containerd-1.2.0-rc.0.linux-amd64.tar.gz -C /
mv crictl kube-proxy kubelet runc \
/usr/local/bin/
mv containerd containerd-shim-runc-v2 containerd-stress /bin/
mv cni-plugins/* /opt/cni/bin/
}
```
### Configure CNI Networking
Retrieve the Pod CIDR range for the current compute instance:
```
POD_CIDR=$(curl -s -H "Metadata-Flavor: Google" \
http://metadata.google.internal/computeMetadata/v1/instance/attributes/pod-cidr)
```
Create the `bridge` network configuration file:
```
cat <<EOF | sudo tee /etc/cni/net.d/10-bridge.conf
{
"cniVersion": "0.3.1",
"name": "bridge",
"type": "bridge",
"bridge": "cnio0",
"isGateway": true,
"ipMasq": true,
"ipam": {
"type": "host-local",
"ranges": [
[{"subnet": "${POD_CIDR}"}]
],
"routes": [{"dst": "0.0.0.0/0"}]
}
}
EOF
```bash
mv 10-bridge.conf 99-loopback.conf /etc/cni/net.d/
```
Create the `loopback` network configuration file:
To ensure network traffic crossing the CNI `bridge` network is processed by `iptables`, load and configure the `br-netfilter` kernel module:
```
cat <<EOF | sudo tee /etc/cni/net.d/99-loopback.conf
```bash
{
"cniVersion": "0.3.1",
"type": "loopback"
modprobe br-netfilter
echo "br-netfilter" >> /etc/modules-load.d/modules.conf
}
```
```bash
{
echo "net.bridge.bridge-nf-call-iptables = 1" \
>> /etc/sysctl.d/kubernetes.conf
echo "net.bridge.bridge-nf-call-ip6tables = 1" \
>> /etc/sysctl.d/kubernetes.conf
sysctl -p /etc/sysctl.d/kubernetes.conf
}
EOF
```
### Configure containerd
Create the `containerd` configuration file:
Install the `containerd` configuration files:
```
sudo mkdir -p /etc/containerd/
```
```
cat << EOF | sudo tee /etc/containerd/config.toml
[plugins]
[plugins.cri.containerd]
snapshotter = "overlayfs"
[plugins.cri.containerd.default_runtime]
runtime_type = "io.containerd.runtime.v1.linux"
runtime_engine = "/usr/local/bin/runc"
runtime_root = ""
[plugins.cri.containerd.untrusted_workload_runtime]
runtime_type = "io.containerd.runtime.v1.linux"
runtime_engine = "/usr/local/bin/runsc"
runtime_root = "/run/containerd/runsc"
[plugins.cri.containerd.gvisor]
runtime_type = "io.containerd.runtime.v1.linux"
runtime_engine = "/usr/local/bin/runsc"
runtime_root = "/run/containerd/runsc"
EOF
```
> Untrusted workloads will be run using the gVisor (runsc) runtime.
Create the `containerd.service` systemd unit file:
```
cat <<EOF | sudo tee /etc/systemd/system/containerd.service
[Unit]
Description=containerd container runtime
Documentation=https://containerd.io
After=network.target
[Service]
ExecStartPre=/sbin/modprobe overlay
ExecStart=/bin/containerd
Restart=always
RestartSec=5
Delegate=yes
KillMode=process
OOMScoreAdjust=-999
LimitNOFILE=1048576
LimitNPROC=infinity
LimitCORE=infinity
[Install]
WantedBy=multi-user.target
EOF
```bash
{
mkdir -p /etc/containerd/
mv containerd-config.toml /etc/containerd/config.toml
mv containerd.service /etc/systemd/system/
}
```
### Configure the Kubelet
```
{
sudo mv ${HOSTNAME}-key.pem ${HOSTNAME}.pem /var/lib/kubelet/
sudo mv ${HOSTNAME}.kubeconfig /var/lib/kubelet/kubeconfig
sudo mv ca.pem /var/lib/kubernetes/
}
```
Create the `kubelet-config.yaml` configuration file:
```
cat <<EOF | sudo tee /var/lib/kubelet/kubelet-config.yaml
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
authentication:
anonymous:
enabled: false
webhook:
enabled: true
x509:
clientCAFile: "/var/lib/kubernetes/ca.pem"
authorization:
mode: Webhook
clusterDomain: "cluster.local"
clusterDNS:
- "10.32.0.10"
podCIDR: "${POD_CIDR}"
resolvConf: "/run/systemd/resolve/resolv.conf"
runtimeRequestTimeout: "15m"
tlsCertFile: "/var/lib/kubelet/${HOSTNAME}.pem"
tlsPrivateKeyFile: "/var/lib/kubelet/${HOSTNAME}-key.pem"
EOF
```
> The `resolvConf` configuration is used to avoid loops when using CoreDNS for service discovery on systems running `systemd-resolved`.
Create the `kubelet.service` systemd unit file:
```
cat <<EOF | sudo tee /etc/systemd/system/kubelet.service
[Unit]
Description=Kubernetes Kubelet
Documentation=https://github.com/kubernetes/kubernetes
After=containerd.service
Requires=containerd.service
[Service]
ExecStart=/usr/local/bin/kubelet \\
--config=/var/lib/kubelet/kubelet-config.yaml \\
--container-runtime=remote \\
--container-runtime-endpoint=unix:///var/run/containerd/containerd.sock \\
--image-pull-progress-deadline=2m \\
--kubeconfig=/var/lib/kubelet/kubeconfig \\
--network-plugin=cni \\
--register-node=true \\
--v=2
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
EOF
```bash
{
mv kubelet-config.yaml /var/lib/kubelet/
mv kubelet.service /etc/systemd/system/
}
```
### Configure the Kubernetes Proxy
```
sudo mv kube-proxy.kubeconfig /var/lib/kube-proxy/kubeconfig
```
Create the `kube-proxy-config.yaml` configuration file:
```
cat <<EOF | sudo tee /var/lib/kube-proxy/kube-proxy-config.yaml
kind: KubeProxyConfiguration
apiVersion: kubeproxy.config.k8s.io/v1alpha1
clientConnection:
kubeconfig: "/var/lib/kube-proxy/kubeconfig"
mode: "iptables"
clusterCIDR: "10.200.0.0/16"
EOF
```
Create the `kube-proxy.service` systemd unit file:
```
cat <<EOF | sudo tee /etc/systemd/system/kube-proxy.service
[Unit]
Description=Kubernetes Kube Proxy
Documentation=https://github.com/kubernetes/kubernetes
[Service]
ExecStart=/usr/local/bin/kube-proxy \\
--config=/var/lib/kube-proxy/kube-proxy-config.yaml
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
EOF
```bash
{
mv kube-proxy-config.yaml /var/lib/kube-proxy/
mv kube-proxy.service /etc/systemd/system/
}
```
### Start the Worker Services
```
```bash
{
sudo systemctl daemon-reload
sudo systemctl enable containerd kubelet kube-proxy
sudo systemctl start containerd kubelet kube-proxy
systemctl daemon-reload
systemctl enable containerd kubelet kube-proxy
systemctl start containerd kubelet kube-proxy
}
```
> Remember to run the above commands on each worker node: `worker-0`, `worker-1`, and `worker-2`.
Check if the kubelet service is running:
```bash
systemctl is-active kubelet
```
```text
active
```
Be sure to complete the steps in this section on each worker node, `node-0` and `node-1`, before moving on to the next section.
## Verification
> The compute instances created in this tutorial will not have permission to complete this section. Run the following commands from the same machine used to create the compute instances.
Run the following commands from the `jumpbox` machine.
List the registered Kubernetes nodes:
```
gcloud compute ssh controller-0 \
--command "kubectl get nodes --kubeconfig admin.kubeconfig"
```bash
ssh root@server \
"kubectl get nodes \
--kubeconfig admin.kubeconfig"
```
> output
```
NAME STATUS ROLES AGE VERSION
worker-0 Ready <none> 35s v1.12.0
worker-1 Ready <none> 36s v1.12.0
worker-2 Ready <none> 36s v1.12.0
NAME STATUS ROLES AGE VERSION
node-0 Ready <none> 1m v1.32.3
node-1 Ready <none> 10s v1.32.3
```
Next: [Configuring kubectl for Remote Access](10-configuring-kubectl.md)

View File

@@ -2,28 +2,45 @@
In this lab you will generate a kubeconfig file for the `kubectl` command line utility based on the `admin` user credentials.
> Run the commands in this lab from the same directory used to generate the admin client certificates.
> Run the commands in this lab from the `jumpbox` machine.
## The Admin Kubernetes Configuration File
Each kubeconfig requires a Kubernetes API Server to connect to. To support high availability the IP address assigned to the external load balancer fronting the Kubernetes API Servers will be used.
Each kubeconfig requires a Kubernetes API Server to connect to.
You should be able to ping `server.kubernetes.local` based on the `/etc/hosts` DNS entry from a previous lab.
```bash
curl --cacert ca.crt \
https://server.kubernetes.local:6443/version
```
```text
{
"major": "1",
"minor": "32",
"gitVersion": "v1.32.3",
"gitCommit": "32cc146f75aad04beaaa245a7157eb35063a9f99",
"gitTreeState": "clean",
"buildDate": "2025-03-11T19:52:21Z",
"goVersion": "go1.23.6",
"compiler": "gc",
"platform": "linux/arm64"
}
```
Generate a kubeconfig file suitable for authenticating as the `admin` user:
```
```bash
{
KUBERNETES_PUBLIC_ADDRESS=$(gcloud compute addresses describe kubernetes-the-hard-way \
--region $(gcloud config get-value compute/region) \
--format 'value(address)')
kubectl config set-cluster kubernetes-the-hard-way \
--certificate-authority=ca.pem \
--certificate-authority=ca.crt \
--embed-certs=true \
--server=https://${KUBERNETES_PUBLIC_ADDRESS}:6443
--server=https://server.kubernetes.local:6443
kubectl config set-credentials admin \
--client-certificate=admin.pem \
--client-key=admin-key.pem
--client-certificate=admin.crt \
--client-key=admin.key
kubectl config set-context kubernetes-the-hard-way \
--cluster=kubernetes-the-hard-way \
@@ -32,39 +49,33 @@ Generate a kubeconfig file suitable for authenticating as the `admin` user:
kubectl config use-context kubernetes-the-hard-way
}
```
The results of running the command above should create a kubeconfig file in the default location `~/.kube/config` used by the `kubectl` commandline tool. This also means you can run the `kubectl` command without specifying a config.
## Verification
Check the health of the remote Kubernetes cluster:
Check the version of the remote Kubernetes cluster:
```
kubectl get componentstatuses
```bash
kubectl version
```
> output
```
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-1 Healthy {"health":"true"}
etcd-2 Healthy {"health":"true"}
etcd-0 Healthy {"health":"true"}
```text
Client Version: v1.32.3
Kustomize Version: v5.5.0
Server Version: v1.32.3
```
List the nodes in the remote Kubernetes cluster:
```
```bash
kubectl get nodes
```
> output
```
NAME STATUS ROLES AGE VERSION
worker-0 Ready <none> 117s v1.12.0
worker-1 Ready <none> 118s v1.12.0
worker-2 Ready <none> 118s v1.12.0
NAME STATUS ROLES AGE VERSION
node-0 Ready <none> 10m v1.32.3
node-1 Ready <none> 10m v1.32.3
```
Next: [Provisioning Pod Network Routes](11-pod-network-routes.md)

View File

@@ -12,49 +12,67 @@ In this section you will gather the information required to create routes in the
Print the internal IP address and Pod CIDR range for each worker instance:
```
for instance in worker-0 worker-1 worker-2; do
gcloud compute instances describe ${instance} \
--format 'value[separator=" "](networkInterfaces[0].networkIP,metadata.items[0].value)'
done
```bash
{
SERVER_IP=$(grep server machines.txt | cut -d " " -f 1)
NODE_0_IP=$(grep node-0 machines.txt | cut -d " " -f 1)
NODE_0_SUBNET=$(grep node-0 machines.txt | cut -d " " -f 4)
NODE_1_IP=$(grep node-1 machines.txt | cut -d " " -f 1)
NODE_1_SUBNET=$(grep node-1 machines.txt | cut -d " " -f 4)
}
```
> output
```
10.240.0.20 10.200.0.0/24
10.240.0.21 10.200.1.0/24
10.240.0.22 10.200.2.0/24
```bash
ssh root@server <<EOF
ip route add ${NODE_0_SUBNET} via ${NODE_0_IP}
ip route add ${NODE_1_SUBNET} via ${NODE_1_IP}
EOF
```
## Routes
Create network routes for each worker instance:
```
for i in 0 1 2; do
gcloud compute routes create kubernetes-route-10-200-${i}-0-24 \
--network kubernetes-the-hard-way \
--next-hop-address 10.240.0.2${i} \
--destination-range 10.200.${i}.0/24
done
```bash
ssh root@node-0 <<EOF
ip route add ${NODE_1_SUBNET} via ${NODE_1_IP}
EOF
```
List the routes in the `kubernetes-the-hard-way` VPC network:
```
gcloud compute routes list --filter "network: kubernetes-the-hard-way"
```bash
ssh root@node-1 <<EOF
ip route add ${NODE_0_SUBNET} via ${NODE_0_IP}
EOF
```
> output
## Verification
```
NAME NETWORK DEST_RANGE NEXT_HOP PRIORITY
default-route-081879136902de56 kubernetes-the-hard-way 10.240.0.0/24 kubernetes-the-hard-way 1000
default-route-55199a5aa126d7aa kubernetes-the-hard-way 0.0.0.0/0 default-internet-gateway 1000
kubernetes-route-10-200-0-0-24 kubernetes-the-hard-way 10.200.0.0/24 10.240.0.20 1000
kubernetes-route-10-200-1-0-24 kubernetes-the-hard-way 10.200.1.0/24 10.240.0.21 1000
kubernetes-route-10-200-2-0-24 kubernetes-the-hard-way 10.200.2.0/24 10.240.0.22 1000
```bash
ssh root@server ip route
```
Next: [Deploying the DNS Cluster Add-on](12-dns-addon.md)
```text
default via XXX.XXX.XXX.XXX dev ens160
10.200.0.0/24 via XXX.XXX.XXX.XXX dev ens160
10.200.1.0/24 via XXX.XXX.XXX.XXX dev ens160
XXX.XXX.XXX.0/24 dev ens160 proto kernel scope link src XXX.XXX.XXX.XXX
```
```bash
ssh root@node-0 ip route
```
```text
default via XXX.XXX.XXX.XXX dev ens160
10.200.1.0/24 via XXX.XXX.XXX.XXX dev ens160
XXX.XXX.XXX.0/24 dev ens160 proto kernel scope link src XXX.XXX.XXX.XXX
```
```bash
ssh root@node-1 ip route
```
```text
default via XXX.XXX.XXX.XXX dev ens160
10.200.0.0/24 via XXX.XXX.XXX.XXX dev ens160
XXX.XXX.XXX.0/24 dev ens160 proto kernel scope link src XXX.XXX.XXX.XXX
```
Next: [Smoke Test](12-smoke-test.md)

View File

@@ -1,81 +0,0 @@
# Deploying the DNS Cluster Add-on
In this lab you will deploy the [DNS add-on](https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/) which provides DNS based service discovery, backed by [CoreDNS](https://coredns.io/), to applications running inside the Kubernetes cluster.
## The DNS Cluster Add-on
Deploy the `coredns` cluster add-on:
```
kubectl apply -f https://storage.googleapis.com/kubernetes-the-hard-way/coredns.yaml
```
> output
```
serviceaccount/coredns created
clusterrole.rbac.authorization.k8s.io/system:coredns created
clusterrolebinding.rbac.authorization.k8s.io/system:coredns created
configmap/coredns created
deployment.extensions/coredns created
service/kube-dns created
```
List the pods created by the `kube-dns` deployment:
```
kubectl get pods -l k8s-app=kube-dns -n kube-system
```
> output
```
NAME READY STATUS RESTARTS AGE
coredns-699f8ddd77-94qv9 1/1 Running 0 20s
coredns-699f8ddd77-gtcgb 1/1 Running 0 20s
```
## Verification
Create a `busybox` deployment:
```
kubectl run busybox --image=busybox:1.28 --command -- sleep 3600
```
List the pod created by the `busybox` deployment:
```
kubectl get pods -l run=busybox
```
> output
```
NAME READY STATUS RESTARTS AGE
busybox-bd8fb7cbd-vflm9 1/1 Running 0 10s
```
Retrieve the full name of the `busybox` pod:
```
POD_NAME=$(kubectl get pods -l run=busybox -o jsonpath="{.items[0].metadata.name}")
```
Execute a DNS lookup for the `kubernetes` service inside the `busybox` pod:
```
kubectl exec -ti $POD_NAME -- nslookup kubernetes
```
> output
```
Server: 10.32.0.10
Address 1: 10.32.0.10 kube-dns.kube-system.svc.cluster.local
Name: kubernetes
Address 1: 10.32.0.1 kubernetes.default.svc.cluster.local
```
Next: [Smoke Test](13-smoke-test.md)

196
docs/12-smoke-test.md Normal file
View File

@@ -0,0 +1,196 @@
# Smoke Test
In this lab you will complete a series of tasks to ensure your Kubernetes cluster is functioning correctly.
## Data Encryption
In this section you will verify the ability to [encrypt secret data at rest](https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/#verifying-that-data-is-encrypted).
Create a generic secret:
```bash
kubectl create secret generic kubernetes-the-hard-way \
--from-literal="mykey=mydata"
```
Print a hexdump of the `kubernetes-the-hard-way` secret stored in etcd:
```bash
ssh root@server \
'etcdctl get /registry/secrets/default/kubernetes-the-hard-way | hexdump -C'
```
```text
00000000 2f 72 65 67 69 73 74 72 79 2f 73 65 63 72 65 74 |/registry/secret|
00000010 73 2f 64 65 66 61 75 6c 74 2f 6b 75 62 65 72 6e |s/default/kubern|
00000020 65 74 65 73 2d 74 68 65 2d 68 61 72 64 2d 77 61 |etes-the-hard-wa|
00000030 79 0a 6b 38 73 3a 65 6e 63 3a 61 65 73 63 62 63 |y.k8s:enc:aescbc|
00000040 3a 76 31 3a 6b 65 79 31 3a 4f 1b 80 d8 89 72 f4 |:v1:key1:O....r.|
00000050 60 8a 2c a0 76 1a e1 dc 98 d6 00 7a a4 2f f3 92 |`.,.v......z./..|
00000060 87 63 c9 22 f4 58 c8 27 b9 ff 2c 2e 1a b6 55 be |.c.".X.'..,...U.|
00000070 d5 5c 4d 69 82 2f b7 e4 b3 b0 12 e1 58 c4 9c 77 |.\Mi./......X..w|
00000080 78 0c 1a 90 c9 c1 23 6c 73 8e 6e fd 8e 9c 3d 84 |x.....#ls.n...=.|
00000090 7d bf 69 81 ce c9 aa 38 be 3b dd 66 aa a3 33 27 |}.i....8.;.f..3'|
000000a0 df be 6d ac 1c 6d 8a 82 df b3 19 da 0f 93 94 1e |..m..m..........|
000000b0 e0 7d 46 8d b5 14 d0 c5 97 e2 94 76 26 a8 cb 33 |.}F........v&..3|
000000c0 57 2a d0 27 a6 5a e1 76 a7 3f f0 b7 0a 7b ff 53 |W*.'.Z.v.?...{.S|
000000d0 cf c9 1a 18 5b 45 f8 b1 06 3b a9 45 02 76 23 61 |....[E...;.E.v#a|
000000e0 5e dc 86 cf 8e a4 d3 c9 5c 6a 6f e6 33 7b 5b 8f |^.......\jo.3{[.|
000000f0 fb 8a 14 74 58 f9 49 2f 97 98 cc 5c d4 4a 10 1a |...tX.I/...\.J..|
00000100 64 0a 79 21 68 a0 9e 7a 03 b7 19 e6 20 e4 1b ce |d.y!h..z.... ...|
00000110 91 64 ce 90 d9 4f 86 ca fb 45 2f d6 56 93 68 e1 |.d...O...E/.V.h.|
00000120 0b aa 8c a0 20 a6 97 fa a1 de 07 6d 5b 4c 02 96 |.... ......m[L..|
00000130 31 70 20 83 16 f9 0a 22 5c 63 ad f1 ea 41 a7 1e |1p ...."\c...A..|
00000140 29 1a d4 a4 e9 d7 0c 04 74 66 04 6d 73 d8 2e 3f |).......tf.ms..?|
00000150 f0 b9 2f 77 bd 07 d7 7c 42 0a |../w...|B.|
0000015a
```
The etcd key should be prefixed with `k8s:enc:aescbc:v1:key1`, which indicates the `aescbc` provider was used to encrypt the data with the `key1` encryption key.
## Deployments
In this section you will verify the ability to create and manage [Deployments](https://kubernetes.io/docs/concepts/workloads/controllers/deployment/).
Create a deployment for the [nginx](https://nginx.org/en/) web server:
```bash
kubectl create deployment nginx \
--image=nginx:latest
```
List the pod created by the `nginx` deployment:
```bash
kubectl get pods -l app=nginx
```
```bash
NAME READY STATUS RESTARTS AGE
nginx-56fcf95486-c8dnx 1/1 Running 0 8s
```
### Port Forwarding
In this section you will verify the ability to access applications remotely using [port forwarding](https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/).
Retrieve the full name of the `nginx` pod:
```bash
POD_NAME=$(kubectl get pods -l app=nginx \
-o jsonpath="{.items[0].metadata.name}")
```
Forward port `8080` on your local machine to port `80` of the `nginx` pod:
```bash
kubectl port-forward $POD_NAME 8080:80
```
```text
Forwarding from 127.0.0.1:8080 -> 80
Forwarding from [::1]:8080 -> 80
```
In a new terminal make an HTTP request using the forwarding address:
```bash
curl --head http://127.0.0.1:8080
```
```text
HTTP/1.1 200 OK
Server: nginx/1.27.4
Date: Sun, 06 Apr 2025 17:17:12 GMT
Content-Type: text/html
Content-Length: 615
Last-Modified: Wed, 05 Feb 2025 11:06:32 GMT
Connection: keep-alive
ETag: "67a34638-267"
Accept-Ranges: bytes
```
Switch back to the previous terminal and stop the port forwarding to the `nginx` pod:
```text
Forwarding from 127.0.0.1:8080 -> 80
Forwarding from [::1]:8080 -> 80
Handling connection for 8080
^C
```
### Logs
In this section you will verify the ability to [retrieve container logs](https://kubernetes.io/docs/concepts/cluster-administration/logging/).
Print the `nginx` pod logs:
```bash
kubectl logs $POD_NAME
```
```text
...
127.0.0.1 - - [06/Apr/2025:17:17:12 +0000] "HEAD / HTTP/1.1" 200 0 "-" "curl/7.88.1" "-"
```
### Exec
In this section you will verify the ability to [execute commands in a container](https://kubernetes.io/docs/tasks/debug-application-cluster/get-shell-running-container/#running-individual-commands-in-a-container).
Print the nginx version by executing the `nginx -v` command in the `nginx` container:
```bash
kubectl exec -ti $POD_NAME -- nginx -v
```
```text
nginx version: nginx/1.27.4
```
## Services
In this section you will verify the ability to expose applications using a [Service](https://kubernetes.io/docs/concepts/services-networking/service/).
Expose the `nginx` deployment using a [NodePort](https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport) service:
```bash
kubectl expose deployment nginx \
--port 80 --type NodePort
```
> The LoadBalancer service type can not be used because your cluster is not configured with [cloud provider integration](https://kubernetes.io/docs/getting-started-guides/scratch/#cloud-provider). Setting up cloud provider integration is out of scope for this tutorial.
Retrieve the node port assigned to the `nginx` service:
```bash
NODE_PORT=$(kubectl get svc nginx \
--output=jsonpath='{range .spec.ports[0]}{.nodePort}')
```
Retrieve the hostname of the node running the `nginx` pod:
```bash
NODE_NAME=$(kubectl get pods \
-l app=nginx \
-o jsonpath="{.items[0].spec.nodeName}")
```
Make an HTTP request using the IP address and the `nginx` node port:
```bash
curl -I http://${NODE_NAME}:${NODE_PORT}
```
```text
Server: nginx/1.27.4
Date: Sun, 06 Apr 2025 17:18:36 GMT
Content-Type: text/html
Content-Length: 615
Last-Modified: Wed, 05 Feb 2025 11:06:32 GMT
Connection: keep-alive
ETag: "67a34638-267"
Accept-Ranges: bytes
```
Next: [Cleaning Up](13-cleanup.md)

11
docs/13-cleanup.md Normal file
View File

@@ -0,0 +1,11 @@
# Cleaning Up
In this lab you will delete the compute resources created during this tutorial.
## Compute Instances
Previous versions of this guide made use of GCP resources for various aspects of compute and networking. The current version is agnostic, and all configuration is performed on the `jumpbox`, `server`, or nodes.
Clean up is as simple as deleting all virtual machines you created for this exercise.
Next: [Start Over](../README.md)

View File

@@ -1,326 +0,0 @@
# Smoke Test
In this lab you will complete a series of tasks to ensure your Kubernetes cluster is functioning correctly.
## Data Encryption
In this section you will verify the ability to [encrypt secret data at rest](https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/#verifying-that-data-is-encrypted).
Create a generic secret:
```
kubectl create secret generic kubernetes-the-hard-way \
--from-literal="mykey=mydata"
```
Print a hexdump of the `kubernetes-the-hard-way` secret stored in etcd:
```
gcloud compute ssh controller-0 \
--command "sudo ETCDCTL_API=3 etcdctl get \
--endpoints=https://127.0.0.1:2379 \
--cacert=/etc/etcd/ca.pem \
--cert=/etc/etcd/kubernetes.pem \
--key=/etc/etcd/kubernetes-key.pem\
/registry/secrets/default/kubernetes-the-hard-way | hexdump -C"
```
> output
```
00000000 2f 72 65 67 69 73 74 72 79 2f 73 65 63 72 65 74 |/registry/secret|
00000010 73 2f 64 65 66 61 75 6c 74 2f 6b 75 62 65 72 6e |s/default/kubern|
00000020 65 74 65 73 2d 74 68 65 2d 68 61 72 64 2d 77 61 |etes-the-hard-wa|
00000030 79 0a 6b 38 73 3a 65 6e 63 3a 61 65 73 63 62 63 |y.k8s:enc:aescbc|
00000040 3a 76 31 3a 6b 65 79 31 3a dd 3f 36 6c ce 65 9d |:v1:key1:.?6l.e.|
00000050 b3 b1 46 1a ba ae a2 1f e4 fa 13 0c 4b 6e 2c 3c |..F.........Kn,<|
00000060 15 fa 88 56 84 b7 aa c0 7a ca 66 f3 de db 2b a3 |...V....z.f...+.|
00000070 88 dc b1 b1 d8 2f 16 3e 6b 4a cb ac 88 5d 23 2d |...../.>kJ...]#-|
00000080 99 62 be 72 9f a5 01 38 15 c4 43 ac 38 5f ef 88 |.b.r...8..C.8_..|
00000090 3b 88 c1 e6 b6 06 4f ae a8 6b c8 40 70 ac 0a d3 |;.....O..k.@p...|
000000a0 3e dc 2b b6 0f 01 b6 8b e2 21 29 4d 32 d6 67 a6 |>.+......!)M2.g.|
000000b0 4e 6d bb 61 0d 85 22 ea f4 d6 2d 0a af 3c 71 85 |Nm.a.."...-..<q.|
000000c0 96 27 c9 ec 90 e3 56 8c 94 a7 1c 9a 0e 00 28 11 |.'....V.......(.|
000000d0 18 28 f4 33 42 d9 57 d9 e3 e9 1c 38 e3 bc 1e c3 |.(.3B.W....8....|
000000e0 d2 47 f3 20 60 be b8 57 a7 0a |.G. `..W..|
000000ea
```
The etcd key should be prefixed with `k8s:enc:aescbc:v1:key1`, which indicates the `aescbc` provider was used to encrypt the data with the `key1` encryption key.
## Deployments
In this section you will verify the ability to create and manage [Deployments](https://kubernetes.io/docs/concepts/workloads/controllers/deployment/).
Create a deployment for the [nginx](https://nginx.org/en/) web server:
```
kubectl run nginx --image=nginx
```
List the pod created by the `nginx` deployment:
```
kubectl get pods -l run=nginx
```
> output
```
NAME READY STATUS RESTARTS AGE
nginx-dbddb74b8-6lxg2 1/1 Running 0 10s
```
### Port Forwarding
In this section you will verify the ability to access applications remotely using [port forwarding](https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/).
Retrieve the full name of the `nginx` pod:
```
POD_NAME=$(kubectl get pods -l run=nginx -o jsonpath="{.items[0].metadata.name}")
```
Forward port `8080` on your local machine to port `80` of the `nginx` pod:
```
kubectl port-forward $POD_NAME 8080:80
```
> output
```
Forwarding from 127.0.0.1:8080 -> 80
Forwarding from [::1]:8080 -> 80
```
In a new terminal make an HTTP request using the forwarding address:
```
curl --head http://127.0.0.1:8080
```
> output
```
HTTP/1.1 200 OK
Server: nginx/1.15.4
Date: Sun, 30 Sep 2018 19:23:10 GMT
Content-Type: text/html
Content-Length: 612
Last-Modified: Tue, 25 Sep 2018 15:04:03 GMT
Connection: keep-alive
ETag: "5baa4e63-264"
Accept-Ranges: bytes
```
Switch back to the previous terminal and stop the port forwarding to the `nginx` pod:
```
Forwarding from 127.0.0.1:8080 -> 80
Forwarding from [::1]:8080 -> 80
Handling connection for 8080
^C
```
### Logs
In this section you will verify the ability to [retrieve container logs](https://kubernetes.io/docs/concepts/cluster-administration/logging/).
Print the `nginx` pod logs:
```
kubectl logs $POD_NAME
```
> output
```
127.0.0.1 - - [30/Sep/2018:19:23:10 +0000] "HEAD / HTTP/1.1" 200 0 "-" "curl/7.58.0" "-"
```
### Exec
In this section you will verify the ability to [execute commands in a container](https://kubernetes.io/docs/tasks/debug-application-cluster/get-shell-running-container/#running-individual-commands-in-a-container).
Print the nginx version by executing the `nginx -v` command in the `nginx` container:
```
kubectl exec -ti $POD_NAME -- nginx -v
```
> output
```
nginx version: nginx/1.15.4
```
## Services
In this section you will verify the ability to expose applications using a [Service](https://kubernetes.io/docs/concepts/services-networking/service/).
Expose the `nginx` deployment using a [NodePort](https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport) service:
```
kubectl expose deployment nginx --port 80 --type NodePort
```
> The LoadBalancer service type can not be used because your cluster is not configured with [cloud provider integration](https://kubernetes.io/docs/getting-started-guides/scratch/#cloud-provider). Setting up cloud provider integration is out of scope for this tutorial.
Retrieve the node port assigned to the `nginx` service:
```
NODE_PORT=$(kubectl get svc nginx \
--output=jsonpath='{range .spec.ports[0]}{.nodePort}')
```
Create a firewall rule that allows remote access to the `nginx` node port:
```
gcloud compute firewall-rules create kubernetes-the-hard-way-allow-nginx-service \
--allow=tcp:${NODE_PORT} \
--network kubernetes-the-hard-way
```
Retrieve the external IP address of a worker instance:
```
EXTERNAL_IP=$(gcloud compute instances describe worker-0 \
--format 'value(networkInterfaces[0].accessConfigs[0].natIP)')
```
Make an HTTP request using the external IP address and the `nginx` node port:
```
curl -I http://${EXTERNAL_IP}:${NODE_PORT}
```
> output
```
HTTP/1.1 200 OK
Server: nginx/1.15.4
Date: Sun, 30 Sep 2018 19:25:40 GMT
Content-Type: text/html
Content-Length: 612
Last-Modified: Tue, 25 Sep 2018 15:04:03 GMT
Connection: keep-alive
ETag: "5baa4e63-264"
Accept-Ranges: bytes
```
## Untrusted Workloads
This section will verify the ability to run untrusted workloads using [gVisor](https://github.com/google/gvisor).
Create the `untrusted` pod:
```
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: untrusted
annotations:
io.kubernetes.cri.untrusted-workload: "true"
spec:
containers:
- name: webserver
image: gcr.io/hightowerlabs/helloworld:2.0.0
EOF
```
### Verification
In this section you will verify the `untrusted` pod is running under gVisor (runsc) by inspecting the assigned worker node.
Verify the `untrusted` pod is running:
```
kubectl get pods -o wide
```
```
NAME READY STATUS RESTARTS AGE IP NODE
busybox-68654f944b-djjjb 1/1 Running 0 5m 10.200.0.2 worker-0
nginx-65899c769f-xkfcn 1/1 Running 0 4m 10.200.1.2 worker-1
untrusted 1/1 Running 0 10s 10.200.0.3 worker-0
```
Get the node name where the `untrusted` pod is running:
```
INSTANCE_NAME=$(kubectl get pod untrusted --output=jsonpath='{.spec.nodeName}')
```
SSH into the worker node:
```
gcloud compute ssh ${INSTANCE_NAME}
```
List the containers running under gVisor:
```
sudo runsc --root /run/containerd/runsc/k8s.io list
```
```
I0930 19:27:13.255142 20832 x:0] ***************************
I0930 19:27:13.255326 20832 x:0] Args: [runsc --root /run/containerd/runsc/k8s.io list]
I0930 19:27:13.255386 20832 x:0] Git Revision: 50c283b9f56bb7200938d9e207355f05f79f0d17
I0930 19:27:13.255429 20832 x:0] PID: 20832
I0930 19:27:13.255472 20832 x:0] UID: 0, GID: 0
I0930 19:27:13.255591 20832 x:0] Configuration:
I0930 19:27:13.255654 20832 x:0] RootDir: /run/containerd/runsc/k8s.io
I0930 19:27:13.255781 20832 x:0] Platform: ptrace
I0930 19:27:13.255893 20832 x:0] FileAccess: exclusive, overlay: false
I0930 19:27:13.256004 20832 x:0] Network: sandbox, logging: false
I0930 19:27:13.256128 20832 x:0] Strace: false, max size: 1024, syscalls: []
I0930 19:27:13.256238 20832 x:0] ***************************
ID PID STATUS BUNDLE CREATED OWNER
79e74d0cec52a1ff4bc2c9b0bb9662f73ea918959c08bca5bcf07ddb6cb0e1fd 20449 running /run/containerd/io.containerd.runtime.v1.linux/k8s.io/79e74d0cec52a1ff4bc2c9b0bb9662f73ea918959c08bca5bcf07ddb6cb0e1fd 0001-01-01T00:00:00Z
af7470029008a4520b5db9fb5b358c65d64c9f748fae050afb6eaf014a59fea5 20510 running /run/containerd/io.containerd.runtime.v1.linux/k8s.io/af7470029008a4520b5db9fb5b358c65d64c9f748fae050afb6eaf014a59fea5 0001-01-01T00:00:00Z
I0930 19:27:13.259733 20832 x:0] Exiting with status: 0
```
Get the ID of the `untrusted` pod:
```
POD_ID=$(sudo crictl -r unix:///var/run/containerd/containerd.sock \
pods --name untrusted -q)
```
Get the ID of the `webserver` container running in the `untrusted` pod:
```
CONTAINER_ID=$(sudo crictl -r unix:///var/run/containerd/containerd.sock \
ps -p ${POD_ID} -q)
```
Use the gVisor `runsc` command to display the processes running inside the `webserver` container:
```
sudo runsc --root /run/containerd/runsc/k8s.io ps ${CONTAINER_ID}
```
> output
```
I0930 19:31:31.419765 21217 x:0] ***************************
I0930 19:31:31.419907 21217 x:0] Args: [runsc --root /run/containerd/runsc/k8s.io ps af7470029008a4520b5db9fb5b358c65d64c9f748fae050afb6eaf014a59fea5]
I0930 19:31:31.419959 21217 x:0] Git Revision: 50c283b9f56bb7200938d9e207355f05f79f0d17
I0930 19:31:31.420000 21217 x:0] PID: 21217
I0930 19:31:31.420041 21217 x:0] UID: 0, GID: 0
I0930 19:31:31.420081 21217 x:0] Configuration:
I0930 19:31:31.420115 21217 x:0] RootDir: /run/containerd/runsc/k8s.io
I0930 19:31:31.420188 21217 x:0] Platform: ptrace
I0930 19:31:31.420266 21217 x:0] FileAccess: exclusive, overlay: false
I0930 19:31:31.420424 21217 x:0] Network: sandbox, logging: false
I0930 19:31:31.420515 21217 x:0] Strace: false, max size: 1024, syscalls: []
I0930 19:31:31.420676 21217 x:0] ***************************
UID PID PPID C STIME TIME CMD
0 1 0 0 19:26 10ms app
I0930 19:31:31.422022 21217 x:0] Exiting with status: 0
```
Next: [Cleaning Up](14-cleanup.md)

View File

@@ -1,55 +0,0 @@
# Cleaning Up
In this lab you will delete the compute resources created during this tutorial.
## Compute Instances
Delete the controller and worker compute instances:
```
gcloud -q compute instances delete \
controller-0 controller-1 controller-2 \
worker-0 worker-1 worker-2
```
## Networking
Delete the external load balancer network resources:
```
{
gcloud -q compute forwarding-rules delete kubernetes-forwarding-rule \
--region $(gcloud config get-value compute/region)
gcloud -q compute target-pools delete kubernetes-target-pool
gcloud -q compute http-health-checks delete kubernetes
gcloud -q compute addresses delete kubernetes-the-hard-way
}
```
Delete the `kubernetes-the-hard-way` firewall rules:
```
gcloud -q compute firewall-rules delete \
kubernetes-the-hard-way-allow-nginx-service \
kubernetes-the-hard-way-allow-internal \
kubernetes-the-hard-way-allow-external \
kubernetes-the-hard-way-allow-health-check
```
Delete the `kubernetes-the-hard-way` network VPC:
```
{
gcloud -q compute routes delete \
kubernetes-route-10-200-0-0-24 \
kubernetes-route-10-200-1-0-24 \
kubernetes-route-10-200-2-0-24
gcloud -q compute networks subnets delete kubernetes
gcloud -q compute networks delete kubernetes-the-hard-way
}
```

Binary file not shown.

Before

Width:  |  Height:  |  Size: 116 KiB

11
downloads-amd64.txt Normal file
View File

@@ -0,0 +1,11 @@
https://dl.k8s.io/v1.32.3/bin/linux/amd64/kubectl
https://dl.k8s.io/v1.32.3/bin/linux/amd64/kube-apiserver
https://dl.k8s.io/v1.32.3/bin/linux/amd64/kube-controller-manager
https://dl.k8s.io/v1.32.3/bin/linux/amd64/kube-scheduler
https://dl.k8s.io/v1.32.3/bin/linux/amd64/kube-proxy
https://dl.k8s.io/v1.32.3/bin/linux/amd64/kubelet
https://github.com/kubernetes-sigs/cri-tools/releases/download/v1.32.0/crictl-v1.32.0-linux-amd64.tar.gz
https://github.com/opencontainers/runc/releases/download/v1.3.0-rc.1/runc.amd64
https://github.com/containernetworking/plugins/releases/download/v1.6.2/cni-plugins-linux-amd64-v1.6.2.tgz
https://github.com/containerd/containerd/releases/download/v2.1.0-beta.0/containerd-2.1.0-beta.0-linux-amd64.tar.gz
https://github.com/etcd-io/etcd/releases/download/v3.6.0-rc.3/etcd-v3.6.0-rc.3-linux-amd64.tar.gz

11
downloads-arm64.txt Normal file
View File

@@ -0,0 +1,11 @@
https://dl.k8s.io/v1.32.3/bin/linux/arm64/kubectl
https://dl.k8s.io/v1.32.3/bin/linux/arm64/kube-apiserver
https://dl.k8s.io/v1.32.3/bin/linux/arm64/kube-controller-manager
https://dl.k8s.io/v1.32.3/bin/linux/arm64/kube-scheduler
https://dl.k8s.io/v1.32.3/bin/linux/arm64/kube-proxy
https://dl.k8s.io/v1.32.3/bin/linux/arm64/kubelet
https://github.com/kubernetes-sigs/cri-tools/releases/download/v1.32.0/crictl-v1.32.0-linux-arm64.tar.gz
https://github.com/opencontainers/runc/releases/download/v1.3.0-rc.1/runc.arm64
https://github.com/containernetworking/plugins/releases/download/v1.6.2/cni-plugins-linux-arm64-v1.6.2.tgz
https://github.com/containerd/containerd/releases/download/v2.1.0-beta.0/containerd-2.1.0-beta.0-linux-arm64.tar.gz
https://github.com/etcd-io/etcd/releases/download/v3.6.0-rc.3/etcd-v3.6.0-rc.3-linux-arm64.tar.gz

19
units/containerd.service Normal file
View File

@@ -0,0 +1,19 @@
[Unit]
Description=containerd container runtime
Documentation=https://containerd.io
After=network.target
[Service]
ExecStartPre=/sbin/modprobe overlay
ExecStart=/bin/containerd
Restart=always
RestartSec=5
Delegate=yes
KillMode=process
OOMScoreAdjust=-999
LimitNOFILE=1048576
LimitNPROC=infinity
LimitCORE=infinity
[Install]
WantedBy=multi-user.target

21
units/etcd.service Normal file
View File

@@ -0,0 +1,21 @@
[Unit]
Description=etcd
Documentation=https://github.com/etcd-io/etcd
[Service]
Type=notify
ExecStart=/usr/local/bin/etcd \
--name controller \
--initial-advertise-peer-urls http://127.0.0.1:2380 \
--listen-peer-urls http://127.0.0.1:2380 \
--listen-client-urls http://127.0.0.1:2379 \
--advertise-client-urls http://127.0.0.1:2379 \
--initial-cluster-token etcd-cluster-0 \
--initial-cluster controller=http://127.0.0.1:2380 \
--initial-cluster-state new \
--data-dir=/var/lib/etcd
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target

View File

@@ -0,0 +1,34 @@
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
[Service]
ExecStart=/usr/local/bin/kube-apiserver \
--allow-privileged=true \
--audit-log-maxage=30 \
--audit-log-maxbackup=3 \
--audit-log-maxsize=100 \
--audit-log-path=/var/log/audit.log \
--authorization-mode=Node,RBAC \
--bind-address=0.0.0.0 \
--client-ca-file=/var/lib/kubernetes/ca.crt \
--enable-admission-plugins=NamespaceLifecycle,NodeRestriction,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota \
--etcd-servers=http://127.0.0.1:2379 \
--event-ttl=1h \
--encryption-provider-config=/var/lib/kubernetes/encryption-config.yaml \
--kubelet-certificate-authority=/var/lib/kubernetes/ca.crt \
--kubelet-client-certificate=/var/lib/kubernetes/kube-api-server.crt \
--kubelet-client-key=/var/lib/kubernetes/kube-api-server.key \
--runtime-config='api/all=true' \
--service-account-key-file=/var/lib/kubernetes/service-accounts.crt \
--service-account-signing-key-file=/var/lib/kubernetes/service-accounts.key \
--service-account-issuer=https://server.kubernetes.local:6443 \
--service-node-port-range=30000-32767 \
--tls-cert-file=/var/lib/kubernetes/kube-api-server.crt \
--tls-private-key-file=/var/lib/kubernetes/kube-api-server.key \
--v=2
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target

View File

@@ -0,0 +1,22 @@
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes
[Service]
ExecStart=/usr/local/bin/kube-controller-manager \
--bind-address=0.0.0.0 \
--cluster-cidr=10.200.0.0/16 \
--cluster-name=kubernetes \
--cluster-signing-cert-file=/var/lib/kubernetes/ca.crt \
--cluster-signing-key-file=/var/lib/kubernetes/ca.key \
--kubeconfig=/var/lib/kubernetes/kube-controller-manager.kubeconfig \
--root-ca-file=/var/lib/kubernetes/ca.crt \
--service-account-private-key-file=/var/lib/kubernetes/service-accounts.key \
--service-cluster-ip-range=10.32.0.0/24 \
--use-service-account-credentials=true \
--v=2
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target

12
units/kube-proxy.service Normal file
View File

@@ -0,0 +1,12 @@
[Unit]
Description=Kubernetes Kube Proxy
Documentation=https://github.com/kubernetes/kubernetes
[Service]
ExecStart=/usr/local/bin/kube-proxy \
--config=/var/lib/kube-proxy/kube-proxy-config.yaml
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target

View File

@@ -0,0 +1,13 @@
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes
[Service]
ExecStart=/usr/local/bin/kube-scheduler \
--config=/etc/kubernetes/config/kube-scheduler.yaml \
--v=2
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target

16
units/kubelet.service Normal file
View File

@@ -0,0 +1,16 @@
[Unit]
Description=Kubernetes Kubelet
Documentation=https://github.com/kubernetes/kubernetes
After=containerd.service
Requires=containerd.service
[Service]
ExecStart=/usr/local/bin/kubelet \
--config=/var/lib/kubelet/kubelet-config.yaml \
--kubeconfig=/var/lib/kubelet/kubeconfig \
--v=2
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target