为 Amazon 设计分类售卖排行 (#32)

pull/374/head
lsvih 2017-07-03 16:03:37 +08:00 committed by 根号三
parent 140f4eefd6
commit 0c04035f90
1 changed files with 149 additions and 149 deletions

View File

@ -1,88 +1,88 @@
# Design Amazon's sales rank by category feature # 为 Amazon 设计分类售卖排行
*Note: This document links directly to relevant areas found in the [system design topics](https://github.com/donnemartin/system-design-primer#index-of-system-design-topics) to avoid duplication. Refer to the linked content for general talking points, tradeoffs, and alternatives.* **注意:这个文档中的链接会直接指向[系统设计主题索引](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#系统设计主题的索引)中的有关部分,以避免重复的内容。你可以参考链接的相关内容,来了解其总的要点、方案的权衡取舍以及可选的替代方案。**
## Step 1: Outline use cases and constraints ## 第一步:简述用例与约束条件
> Gather requirements and scope the problem. > 搜集需求与问题的范围。
> Ask questions to clarify use cases and constraints. > 提出问题来明确用例与约束条件。
> Discuss assumptions. > 讨论假设。
Without an interviewer to address clarifying questions, we'll define some use cases and constraints. 我们将在没有面试官明确说明问题的情况下,自己定义一些用例以及限制条件。
### Use cases ### 用例
#### We'll scope the problem to handle only the following use case #### 我们将把问题限定在仅处理以下用例的范围中
* **Service** calculates the past week's most popular products by category * **服务**根据分类计算过去一周中最受欢迎的商品
* **User** views the past week's most popular products by category * **用户**通过分类浏览过去一周中最受欢迎的商品
* **Service** has high availability * **服务**有着高可用性
#### Out of scope #### 不在用例范围内的有
* The general e-commerce site * 一般的电商网站
* Design components only for calculating sales rank * 只为售卖排行榜设计组件
### Constraints and assumptions ### 限制条件与假设
#### State assumptions #### 提出假设
* Traffic is not evenly distributed * 网络流量不是均匀分布的
* Items can be in multiple categories * 一个商品可能存在于多个分类中
* Items cannot change categories * 商品不能够更改分类
* There are no subcategories ie `foo/bar/baz` * 不会存在如 `foo/bar/baz` 之类的子分类
* Results must be updated hourly * 每小时更新一次结果
* More popular products might need to be updated more frequently * 受欢迎的商品越多,就需要更频繁地更新
* 10 million products * 1000 万个商品
* 1000 categories * 1000 个分类
* 1 billion transactions per month * 每个月 10 亿次交易
* 100 billion read requests per month * 每个月 1000 亿次读取请求
* 100:1 read to write ratio * 100:1 的读写比例
#### Calculate usage #### 计算用量
**Clarify with your interviewer if you should run back-of-the-envelope usage calculations.** **如果你需要进行粗略的用量计算,请向你的面试官说明。**
* Size per transaction: * 每笔交易的用量:
* `created_at` - 5 bytes * `created_at` - 5 字节
* `product_id` - 8 bytes * `product_id` - 8 字节
* `category_id` - 4 bytes * `category_id` - 4 字节
* `seller_id` - 8 bytes * `seller_id` - 8 字节
* `buyer_id` - 8 bytes * `buyer_id` - 8 字节
* `quantity` - 4 bytes * `quantity` - 4 字节
* `total_price` - 5 bytes * `total_price` - 5 字节
* Total: ~40 bytes * 总计:大约 40 字节
* 40 GB of new transaction content per month * 每个月的交易内容会产生 40 GB 的记录
* 40 bytes per transaction * 1 billion transactions per month * 每次交易 40 字节 * 每个月 10 亿次交易
* 1.44 TB of new transaction content in 3 years * 3年内产生了 1.44 TB 的新交易内容记录
* Assume most are new transactions instead of updates to existing ones * 假定大多数的交易都是新交易而不是更改以前进行完的交易
* 400 transactions per second on average * 平均每秒 400 次交易次数
* 40,000 read requests per second on average * 平均每秒 40,000 次读取请求
Handy conversion guide: 便利换算指南:
* 2.5 million seconds per month * 每个月有 250 万秒
* 1 request per second = 2.5 million requests per month * 每秒一个请求 = 每个月 250 万次请求
* 40 requests per second = 100 million requests per month * 每秒 40 个请求 = 每个月 1 亿次请求
* 400 requests per second = 1 billion requests per month * 每秒 400 个请求 = 每个月 10 亿次请求
## Step 2: Create a high level design ## 第二步:概要设计
> Outline a high level design with all important components. > 列出所有重要组件以规划概要设计。
![Imgur](http://i.imgur.com/vwMa1Qu.png) ![Imgur](http://i.imgur.com/vwMa1Qu.png)
## Step 3: Design core components ## 第三步:设计核心组件
> Dive into details for each core component. > 深入每个核心组件的细节。
### Use case: Service calculates the past week's most popular products by category ### 用例:服务需要根据分类计算上周最受欢迎的商品
We could store the raw **Sales API** server log files on a managed **Object Store** such as Amazon S3, rather than managing our own distributed file system. 我们可以在现成的**对象存储**系统(例如 Amazon S3 服务)中存储 **售卖 API** 服务产生的日志文本, 因此不需要我们自己搭建分布式文件系统了。
**Clarify with your interviewer how much code you are expected to write**. **向你的面试官告知你准备写多少代码**。
We'll assume this is a sample log entry, tab delimited: 假设下面是一个用 tab 分割的简易的日志记录:
``` ```
timestamp product_id category_id qty total_price seller_id buyer_id timestamp product_id category_id qty total_price seller_id buyer_id
@ -95,24 +95,25 @@ t5 product4 category1 1 5.00 5 6
... ...
``` ```
The **Sales Rank Service** could use **MapReduce**, using the **Sales API** server log files as input and writing the results to an aggregate table `sales_rank` in a **SQL Database**. We should discuss the [use cases and tradeoffs between choosing SQL or NoSQL](https://github.com/donnemartin/system-design-primer#sql-or-nosql). **售卖排行服务** 需要用到 **MapReduce**,并使用 **售卖 API** 服务进行日志记录,同时将结果写入 **SQL 数据库**中的总表 `sales_rank` 中。我们也可以讨论一下[究竟是用 SQL 还是用 NoSQL](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#sql-还是-nosql)。
We'll use a multi-step **MapReduce**: 我们需要通过以下步骤使用 **MapReduce**
* **Step 1** - Transform the data to `(category, product_id), sum(quantity)` * **第 1 步** - 将数据转换为 `(category, product_id), sum(quantity)` 的形式
* **Step 2** - Perform a distributed sort * **第 2 步** - 执行分布式排序
``` ```
class SalesRanker(MRJob): class SalesRanker(MRJob):
def within_past_week(self, timestamp): def within_past_week(self, timestamp):
"""Return True if timestamp is within past week, False otherwise.""" """如果时间戳属于过去的一周则返回 True
否则返回 False。"""
... ...
def mapper(self, _ line): def mapper(self, _ line):
"""Parse each log line, extract and transform relevant lines. """解析日志的每一行,提取并转换相关行,
Emit key value pairs of the form: 将键值对设定为如下形式:
(category1, product1), 2 (category1, product1), 2
(category2, product1), 2 (category2, product1), 2
@ -127,7 +128,7 @@ class SalesRanker(MRJob):
yield (category_id, product_id), quantity yield (category_id, product_id), quantity
def reducer(self, key, value): def reducer(self, key, value):
"""Sum values for each key. """将每个 key 的值加起来。
(category1, product1), 2 (category1, product1), 2
(category2, product1), 3 (category2, product1), 3
@ -138,9 +139,9 @@ class SalesRanker(MRJob):
yield key, sum(values) yield key, sum(values)
def mapper_sort(self, key, value): def mapper_sort(self, key, value):
"""Construct key to ensure proper sorting. """构造 key 以确保正确的排序。
Transform key and value to the form: 将键值对转换成如下形式:
(category1, 2), product1 (category1, 2), product1
(category2, 3), product1 (category2, 3), product1
@ -148,8 +149,8 @@ class SalesRanker(MRJob):
(category2, 7), product3 (category2, 7), product3
(category1, 1), product4 (category1, 1), product4
The shuffle/sort step of MapReduce will then do a MapReduce 的随机排序步骤会将键
distributed sort on the keys, resulting in: 值的排序打乱,变成下面这样:
(category1, 1), product4 (category1, 1), product4
(category1, 2), product1 (category1, 2), product1
@ -165,7 +166,7 @@ class SalesRanker(MRJob):
yield key, value yield key, value
def steps(self): def steps(self):
"""Run the map and reduce steps.""" """ 此处为 map reduce 步骤"""
return [ return [
self.mr(mapper=self.mapper, self.mr(mapper=self.mapper,
reducer=self.reducer), reducer=self.reducer),
@ -174,7 +175,7 @@ class SalesRanker(MRJob):
] ]
``` ```
The result would be the following sorted list, which we could insert into the `sales_rank` table: 得到的结果将会是如下的排序列,我们将其插入 `sales_rank` 表中:
``` ```
(category1, 1), product4 (category1, 1), product4
@ -184,7 +185,7 @@ The result would be the following sorted list, which we could insert into the `s
(category2, 7), product3 (category2, 7), product3
``` ```
The `sales_rank` table could have the following structure: `sales_rank` 表的数据结构如下:
``` ```
id int NOT NULL AUTO_INCREMENT id int NOT NULL AUTO_INCREMENT
@ -196,21 +197,21 @@ FOREIGN KEY(category_id) REFERENCES Categories(id)
FOREIGN KEY(product_id) REFERENCES Products(id) FOREIGN KEY(product_id) REFERENCES Products(id)
``` ```
We'll create an [index](https://github.com/donnemartin/system-design-primer#use-good-indices) on `id `, `category_id`, and `product_id` to speed up lookups (log-time instead of scanning the entire table) and to keep the data in memory. Reading 1 MB sequentially from memory takes about 250 microseconds, while reading from SSD takes 4x and from disk takes 80x longer.<sup><a href=https://github.com/donnemartin/system-design-primer#latency-numbers-every-programmer-should-know>1</a></sup> 我们会以 `id`、`category_id` 与 `product_id` 创建一个 [索引](https://github.com/donnemartin/system-design-primer#use-good-indices)以加快查询速度(只需要使用读取日志的时间,不再需要每次都扫描整个数据表)并让数据常驻内存。从内存读取 1 MB 连续数据大约要花 250 微秒,而从 SSD 读取同样大小的数据要花费 4 倍的时间,从机械硬盘读取需要花费 80 倍以上的时间。<sup><a href=https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#每个程序员都应该知道的延迟数>1</a></sup>
### Use case: User views the past week's most popular products by category ### 用例:用户需要根据分类浏览上周中最受欢迎的商品
* The **Client** sends a request to the **Web Server**, running as a [reverse proxy](https://github.com/donnemartin/system-design-primer#reverse-proxy-web-server) * **客户端**向运行[反向代理](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#反向代理web-服务器)的 **Web 服务器**发送一个请求
* The **Web Server** forwards the request to the **Read API** server * 这个 **Web 服务器**将请求转发给**查询 API** 服务
* The **Read API** server reads from the **SQL Database** `sales_rank` table * The **查询 API** 服务将从 **SQL 数据库**`sales_rank` 表中读取数据
We'll use a public [**REST API**](https://github.com/donnemartin/system-design-primer#representational-state-transfer-rest): 我们可以调用一个公共的 [REST API](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#表述性状态转移rest)
``` ```
$ curl https://amazon.com/api/v1/popular?category_id=1234 $ curl https://amazon.com/api/v1/popular?category_id=1234
``` ```
Response: 返回:
``` ```
{ {
@ -233,106 +234,105 @@ Response:
}, },
``` ```
For internal communications, we could use [Remote Procedure Calls](https://github.com/donnemartin/system-design-primer#remote-procedure-call-rpc). 而对于服务器内部的通信,我们可以使用 [RPC](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#远程过程调用协议rpc)。
## Step 4: Scale the design ## 第四步:架构扩展
> Identify and address bottlenecks, given the constraints. > 根据限制条件,找到并解决瓶颈。
![Imgur](http://i.imgur.com/MzExP06.png) ![Imgur](http://i.imgur.com/MzExP06.png)
**Important: Do not simply jump right into the final design from the initial design!** **重要提示:不要从最初设计直接跳到最终设计中!**
State you would 1) **Benchmark/Load Test**, 2) **Profile** for bottlenecks 3) address bottlenecks while evaluating alternatives and trade-offs, and 4) repeat. See [Design a system that scales to millions of users on AWS](../scaling_aws/README.md) as a sample on how to iteratively scale the initial design. 现在你要 1) **基准测试、负载测试**。2) **分析、描述**性能瓶颈。3) 在解决瓶颈问题的同时评估替代方案、权衡利弊。4) 重复以上步骤。请阅读[「设计一个系统,并将其扩大到为数以百万计的 AWS 用户服务」](../scaling_aws/README.md) 来了解如何逐步扩大初始设计。
It's important to discuss what bottlenecks you might encounter with the initial design and how you might address each of them. For example, what issues are addressed by adding a **Load Balancer** with multiple **Web Servers**? **CDN**? **Master-Slave Replicas**? What are the alternatives and **Trade-Offs** for each? 讨论初始设计可能遇到的瓶颈及相关解决方案是很重要的。例如加上一个配置多台 **Web 服务器**的**负载均衡器**是否能够解决问题?**CDN**呢?**主从复制**呢?它们各自的替代方案和需要**权衡**的利弊又有什么呢?
We'll introduce some components to complete the design and to address scalability issues. Internal load balancers are not shown to reduce clutter. 我们将会介绍一些组件来完成设计,并解决架构扩张问题。内置的负载均衡器将不做讨论以节省篇幅。
*To avoid repeating discussions*, refer to the following [system design topics](https://github.com/donnemartin/system-design-primer#index-of-system-design-topics) for main talking points, tradeoffs, and alternatives: **为了避免重复讨论**,请参考[系统设计主题索引](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#系统设计主题的索引)相关部分来了解其要点、方案的权衡取舍以及可选的替代方案。
* [DNS](https://github.com/donnemartin/system-design-primer#domain-name-system) * [DNS](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#域名系统)
* [CDN](https://github.com/donnemartin/system-design-primer#content-delivery-network) * [负载均衡器](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#负载均衡器)
* [Load balancer](https://github.com/donnemartin/system-design-primer#load-balancer) * [水平拓展](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#水平扩展)
* [Horizontal scaling](https://github.com/donnemartin/system-design-primer#horizontal-scaling) * [反向代理web 服务器)](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#反向代理web-服务器)
* [Web server (reverse proxy)](https://github.com/donnemartin/system-design-primer#reverse-proxy-web-server) * [API 服务(应用层)](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#应用层)
* [API server (application layer)](https://github.com/donnemartin/system-design-primer#application-layer) * [缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#缓存)
* [Cache](https://github.com/donnemartin/system-design-primer#cache) * [关系型数据库管理系统 (RDBMS)](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#关系型数据库管理系统rdbms)
* [Relational database management system (RDBMS)](https://github.com/donnemartin/system-design-primer#relational-database-management-system-rdbms) * [SQL 故障主从切换](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#故障切换)
* [SQL write master-slave failover](https://github.com/donnemartin/system-design-primer#fail-over) * [主从复制](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#主从复制)
* [Master-slave replication](https://github.com/donnemartin/system-design-primer#master-slave-replication) * [一致性模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#一致性模式)
* [Consistency patterns](https://github.com/donnemartin/system-design-primer#consistency-patterns) * [可用性模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#可用性模式)
* [Availability patterns](https://github.com/donnemartin/system-design-primer#availability-patterns)
The **Analytics Database** could use a data warehousing solution such as Amazon Redshift or Google BigQuery. **分析数据库** 可以用现成的数据仓储系统,例如使用 Amazon Redshift 或者 Google BigQuery 的解决方案。
We might only want to store a limited time period of data in the database, while storing the rest in a data warehouse or in an **Object Store**. An **Object Store** such as Amazon S3 can comfortably handle the constraint of 40 GB of new content per month. 当使用数据仓储技术或者**对象存储**系统时我们只想在数据库中存储有限时间段的数据。Amazon S3 的**对象存储**系统可以很方便地设置每个月限制只允许新增 40 GB 的存储内容。
To address the 40,000 *average* read requests per second (higher at peak), traffic for popular content (and their sales rank) should be handled by the **Memory Cache** instead of the database. The **Memory Cache** is also useful for handling the unevenly distributed traffic and traffic spikes. With the large volume of reads, the **SQL Read Replicas** might not be able to handle the cache misses. We'll probably need to employ additional SQL scaling patterns. 平均每秒 40,000 次的读取请求(峰值将会更高), 可以通过扩展 **内存缓存** 来处理热点内容的读取流量,这对于处理不均匀分布的流量和流量峰值也很有用。由于读取量非常大,**SQL Read 副本** 可能会遇到处理缓存未命中的问题,我们可能需要使用额外的 SQL 扩展模式。
400 *average* writes per second (higher at peak) might be tough for a single **SQL Write Master-Slave**, also pointing to a need for additional scaling techniques. 平均每秒 400 次写操作(峰值将会更高)可能对于单个 **SQL 写主-从** 模式来说比较很困难,因此同时还需要更多的扩展技术
SQL scaling patterns include: SQL 缩放模式包括:
* [Federation](https://github.com/donnemartin/system-design-primer#federation) * [联合](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#联合)
* [Sharding](https://github.com/donnemartin/system-design-primer#sharding) * [分片](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#分片)
* [Denormalization](https://github.com/donnemartin/system-design-primer#denormalization) * [非规范化](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#非规范化)
* [SQL Tuning](https://github.com/donnemartin/system-design-primer#sql-tuning) * [SQL 调优](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#sql-调优)
We should also consider moving some data to a **NoSQL Database**. 我们也可以考虑将一些数据移至 **NoSQL 数据库**
## Additional talking points ## 其它要点
> Additional topics to dive into, depending on the problem scope and time remaining. > 是否深入这些额外的主题,取决于你的问题范围和剩下的时间。
#### NoSQL #### NoSQL
* [Key-value store](https://github.com/donnemartin/system-design-primer#key-value-store) * [键-值存储](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#键-值存储)
* [Document store](https://github.com/donnemartin/system-design-primer#document-store) * [文档类型存储](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#文档类型存储)
* [Wide column store](https://github.com/donnemartin/system-design-primer#wide-column-store) * [列型存储](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#列型存储)
* [Graph database](https://github.com/donnemartin/system-design-primer#graph-database) * [图数据库](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#图数据库)
* [SQL vs NoSQL](https://github.com/donnemartin/system-design-primer#sql-or-nosql) * [SQL vs NoSQL](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#sql-还是-nosql)
### Caching ### 缓存
* Where to cache * 在哪缓存
* [Client caching](https://github.com/donnemartin/system-design-primer#client-caching) * [客户端缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#客户端缓存)
* [CDN caching](https://github.com/donnemartin/system-design-primer#cdn-caching) * [CDN 缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#cdn-缓存)
* [Web server caching](https://github.com/donnemartin/system-design-primer#web-server-caching) * [Web 服务器缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#web-服务器缓存)
* [Database caching](https://github.com/donnemartin/system-design-primer#database-caching) * [数据库缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#数据库缓存)
* [Application caching](https://github.com/donnemartin/system-design-primer#application-caching) * [应用缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#应用缓存)
* What to cache * 什么需要缓存
* [Caching at the database query level](https://github.com/donnemartin/system-design-primer#caching-at-the-database-query-level) * [数据库查询级别的缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#数据库查询级别的缓存)
* [Caching at the object level](https://github.com/donnemartin/system-design-primer#caching-at-the-object-level) * [对象级别的缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#对象级别的缓存)
* When to update the cache * 何时更新缓存
* [Cache-aside](https://github.com/donnemartin/system-design-primer#cache-aside) * [缓存模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#缓存模式)
* [Write-through](https://github.com/donnemartin/system-design-primer#write-through) * [直写模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#直写模式)
* [Write-behind (write-back)](https://github.com/donnemartin/system-design-primer#write-behind-write-back) * [回写模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#回写模式)
* [Refresh ahead](https://github.com/donnemartin/system-design-primer#refresh-ahead) * [刷新](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#刷新)
### Asynchronism and microservices ### 异步与微服务
* [Message queues](https://github.com/donnemartin/system-design-primer#message-queues) * [消息队列](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#消息队列)
* [Task queues](https://github.com/donnemartin/system-design-primer#task-queues) * [任务队列](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#任务队列)
* [Back pressure](https://github.com/donnemartin/system-design-primer#back-pressure) * [背压](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#背压)
* [Microservices](https://github.com/donnemartin/system-design-primer#microservices) * [微服务](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#微服务)
### Communications ### 通信
* Discuss tradeoffs: * 可权衡选择的方案:
* External communication with clients - [HTTP APIs following REST](https://github.com/donnemartin/system-design-primer#representational-state-transfer-rest) * 与客户端的外部通信 - [使用 REST 作为 HTTP API](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#表述性状态转移rest)
* Internal communications - [RPC](https://github.com/donnemartin/system-design-primer#remote-procedure-call-rpc) * 服务器内部通信 - [RPC](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#远程过程调用协议rpc)
* [Service discovery](https://github.com/donnemartin/system-design-primer#service-discovery) * [服务发现](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#服务发现)
### Security ### 安全性
Refer to the [security section](https://github.com/donnemartin/system-design-primer#security). 请参阅[「安全」](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#安全)一章。
### Latency numbers ### 延迟数值
See [Latency numbers every programmer should know](https://github.com/donnemartin/system-design-primer#latency-numbers-every-programmer-should-know). 请参阅[「每个程序员都应该知道的延迟数」](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#每个程序员都应该知道的延迟数)。
### Ongoing ### 持续探讨
* Continue benchmarking and monitoring your system to address bottlenecks as they come up * 持续进行基准测试并监控你的系统,以解决他们提出的瓶颈问题。
* Scaling is an iterative process * 架构拓展是一个迭代的过程。